42 research outputs found

    Letter to the Editor

    No full text

    Numerical modelling of the shoulder for clinical applications

    Full text link
    Research activity involving numerical models of the shoulder is dramatically increasing, driven by growing rates of injury and the need to better understand shoulder joint pathologies to develop therapeutic strategies. Based on the type of clinical question they can address, existing models can be broadly categorized into three groups: (i) rigid body models that can simulate kinematics, collisions between entities or wrapping of the muscles over the bones, and which have been used to investigate joint kinematics and ergonomics, and are often coupled with (ii) muscle force estimation techniques, consisting mainly of optimization methods and electromyography-driven models, to simulate muscular action and joint reaction forces to address issues in joint stability, muscular rehabilitation or muscle transfer, and (iii) deformable models that account for stress-strain distributions in the component structures to study articular degeneration, implant failure or muscle/tendon/bone integrity. The state of the art in numerical modelling of the shoulder is reviewed, and the advantages, limitations and potential clinical applications of these modelling approaches are critically discussed. This review concentrates primarily on muscle force estimation modelling, with emphasis on a novel muscle recruitment paradigm, compared with traditionally applied optimization methods. Finally, the necessary benchmarks for validating shoulder models, the emerging technologies that will enable further advances and the future challenges in the field are described

    Actuator Sizes in Bio-Robotic Walking Orthoses

    No full text

    Experimental evaluation of human arm kinematics

    No full text
    corecore