47 research outputs found

    Semantic Sentence Matching with Densely-connected Recurrent and Co-attentive Information

    Full text link
    Sentence matching is widely used in various natural language tasks such as natural language inference, paraphrase identification, and question answering. For these tasks, understanding logical and semantic relationship between two sentences is required but it is yet challenging. Although attention mechanism is useful to capture the semantic relationship and to properly align the elements of two sentences, previous methods of attention mechanism simply use a summation operation which does not retain original features enough. Inspired by DenseNet, a densely connected convolutional network, we propose a densely-connected co-attentive recurrent neural network, each layer of which uses concatenated information of attentive features as well as hidden features of all the preceding recurrent layers. It enables preserving the original and the co-attentive feature information from the bottommost word embedding layer to the uppermost recurrent layer. To alleviate the problem of an ever-increasing size of feature vectors due to dense concatenation operations, we also propose to use an autoencoder after dense concatenation. We evaluate our proposed architecture on highly competitive benchmark datasets related to sentence matching. Experimental results show that our architecture, which retains recurrent and attentive features, achieves state-of-the-art performances for most of the tasks.Comment: Accepted at AAAI 201

    Self-supervised pre-training and contrastive representation learning for multiple-choice video QA

    Full text link
    Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice video QA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.Comment: Accepted at AAAI 202

    Nematic response revealed by coherent phonon oscillations in BaFe2_2As2_2

    Full text link
    We investigate coherent phonon oscillations of BaFe2_2As2_2 using optical pump-probe spectroscopy. Time-resolved optical reflectivity shows periodic modulations due to A1gA_{1g} coherent phonon of cc-axis arsenic vibrations. Optical probe beams polarized along the orthorhombic aa- and bb-axes reveal that the initial phase of coherent oscillations shows a systematic deviation as a function of temperature, although these oscillations arise from the same cc-axis arsenic vibrations. The oscillation-phase remains anisotropic even in the tetragonal structure, reflecting a nematic response of BaFe2_2As2_2. Our study suggests that investigation on the phase of coherent phonon oscillations in optical reflectivity can offer unique evidence of a nematic order strongly coupled to a lattice instability.Comment: 5 pages, 4 figure

    Strong spin-phonon coupling unveiled by coherent phonon oscillations in Ca2RuO4

    Get PDF
    © 2019 American Physical Society. We utilize near-infrared femtosecond pulses to investigate coherent phonon oscillations of Ca2RuO4. The coherent Ag phonon mode of the lowest frequency changes abruptly not only its amplitude but also the oscillation phase as the spin order develops. In addition, the phonon mode shows a redshift entering the magnetically ordered state, which indicates a spin-phonon coupling in the system. Density functional theory calculations reveal that the Ag oscillations result in octahedral tilting distortions, which are exactly in sync with the lattice deformation driven by the magnetic ordering. We suggest that the structural distortions by the spin-phonon coupling can induce the unusual oscillation phase shift between impulsive and displacive type oscillation

    Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors

    Get PDF
    Chiral supramolecules have great potential for use in chiral recognition, sensing, and catalysis. Particularly, chiral supramolecular biocoordination polymers (SBCPs) provide a versatile platform for characterizing biorelated processes such as chirality transcription. Here, we selectively synthesize homochiral and heterochiral SBCPs, composed of chiral naphthalene diimide ligands and Zn ions, from enantiomeric and mixed R-ligands and S-ligands, respectively. Notably, we find that the chiral self-sorted SBCPs exhibit multifunctional properties, including photochromic, photoluminescent, photoconductive, and chemiresistive characteristics, thus can be used for various sensors. Specifically, these materials can be used for detecting hazardous amine materials due to the electron transfer from the amine to the SBCP surface and for enantioselectively sensing a chiral species naproxen due to the different binding energies with regard to their chirality. These results provide guidelines for the synthesis of chiral SBCPs and demonstrate their versatility and feasibility for use in various sensors covering photoactive, chemiresistive, and chiral sensors

    Abnormal phase flip in the coherent phonon oscillations of Ca2RuO4

    Get PDF
    We employ an optical pump-probe technique to study coherent phonon oscillations in Ca2RuO4. We find that oscillation amplitude of an Ag symmetric phonon mode is strongly suppressed at 260 K, a putative transition point of orbital ordering. The oscillation also shows a gradual but huge change in its phase, such that the oscillation even flips over with a 180 change across the temperature. Density functional theory calculations indicate that the Ag phonon has an eigenmode of octahedral distortion with conventional tilting along the a axis and antipolar distortion of apical oxygen. Careful inspection of the lattice captures an unusually large antipolar distortion in low-temperature structures, which may play a crucial role for the phase transition at 260 K. ©2018 American Physical Societ
    corecore