104 research outputs found

    Spatial and Temporal Trends of Freshwater Mussel Assemblages in the Meramec River Basin, Missouri, USA

    Get PDF
    The Meramec River basin in east-central Missouri has one of the most diverse unionoid mussel faunas in the central United States with .40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin (Big, Bourbeuse, and Meramec rivers, representing .400 river miles) decreased between 1978 and 1997. We found that over 20 y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30-mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites (16%) with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of in-stream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin

    Manual therapy directed at the knee or lumbopelvic region does not influence quadriceps spinal reflex excitability

    Get PDF
    Manual therapies, directed to the knee and lumbopelvic region, have demonstrated the ability to improve neuromuscular quadriceps function in individuals with knee pathology. It remains unknown if manual therapies may alter impaired spinal reflex excitability, thus identifying a potential mechanism in which manual therapy may improve neuromuscular function following knee injury

    Assaying Environmental Nickel Toxicity Using Model Nematodes

    Get PDF
    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species

    Discovery of common and rare genetic risk variants for colorectal cancer.

    Get PDF
    To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.Goncalo R Abecasis has received compensation from 23andMe and Helix. He is currently an employee of Regeneron Pharmaceuticals. Heather Hampel performs collaborative research with Ambry Genetics, InVitae Genetics, and Myriad Genetic Laboratories, Inc., is on the scientific advisory board for InVitae Genetics and Genome Medical, and has stock in Genome Medical. Rachel Pearlman has participated in collaborative funded research with Myriad Genetics Laboratories and Invitae Genetics but has no financial competitive interest

    Pre-synaptic modulation of quadriceps arthrogenic muscle inhibition

    Full text link
    Arthrogenic muscle inhibition (AMI) impedes rehabilitation following knee joint injury by preventing activation of the quadriceps. AMI has been attributed to neuronal reflex activity in which altered afferent input originating from the injured joint results in a diminished efferent motor drive to the quadriceps muscles. Beginning to understand the mechanisms responsible for muscle inhibition following joint injury is vital to control or eliminate this phenomenon. Therefore, the purpose of this investigation is to determine if quadriceps AMI is mediated by a presynaptic regulatory mechanism. Eight adults participated in two sessions: in one session their knee was injected with saline and in the other session it was not. The maximum Hoffmann reflex (H-reflex), M-wave, reflex activation history, plasma epinephrine, and norepinephrine were recorded at: baseline, post needle stick, post lidocaine, and 25 and 45 min post effusion. Measures for the control condition were matched to the effusion condition. The percent of the unconditioned reflex amplitude for reflex activation history and the maximum H-reflex were decreased at 25 and 45 min post effusion as compared to measures taken at baseline, post needle stick, and post lidocaine ( P 0.05). No differences were detected at any time interval for any measure during the control admission ( P >0.05). Quadriceps AMI elicited via an experimental knee joint effusion is, at least in part, mediated by a presynaptic mechanism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46099/1/167_2004_Article_547.pd
    • …
    corecore