10 research outputs found

    Resonances in odd-odd 182Ta

    Get PDF
    Abstract: Enhanced γ -decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ ) reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl) γ -ray detector array (CACTUS) and silicon particle telescopes (SiRi) at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p)182Ta and 181Ta(d,d’)181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy

    Re-estimation of 180Ta nucleosynthesis in light of newly constrained reaction rates

    Get PDF
    Recent measurements of the nuclear level densities and γ-ray strength functions below the neutron thresholds in 180,181,182Ta are used as input in the nuclear reaction code TALYS. These experimental average quantities are utilized in the calculations of the 179,180,181Ta radiative neutron capture cross sections. From the latter, astrophysical Maxwellian-averaged (n,γ) cross sections (MACS) and reaction rates are extracted, which in turn are used in large astrophysical network calculations to probe the production mechanism of 180Ta. These calculations are performed for two scenarios, the s-process production of 180,181Ta in Asymptotic Giant Branch (AGB) stars and the p-process nucleosynthesis of Tam180 in Type-II supernovae. Based on the results from this work, the s-process in stellar evolution is considered negligible in the production of Tam180 whereas 181Ta is partially produced by AGB stars. The new measurements strongly constrain the production and destruction rates of Tam180 at p-process temperatures and confirm significant production of nature's rarest stable isotope Tam180 by the p-process. Keywords: Nuclear level density, γ-ray strength function, (n,γ) cross sections, Maxwellian-averaged cross sections, Nucleosynthesi

    First application of the Oslo method in inverse kinematics

    No full text
    International audienceThe γ\gamma -ray strength function (γ\gamma SF) and nuclear level density (NLD) have been extracted for the first time from inverse kinematic reactions with the Oslo method. This novel technique allows measurements of these properties across a wide range of previously inaccessible nuclei. Proton–γ\gamma coincidence events from the d(86Kr,pγ)87Kr\mathrm {d}(^{86}\mathrm {Kr}, \mathrm {p}\gamma )^{87}\mathrm {Kr} reaction were measured at iThemba LABS and the γ\gamma SF and NLD in 87Kr^{87}\mathrm {Kr} was obtained. The low-energy region of the γ\gamma SF is compared to shell-model calculations, which suggest this region to be dominated by M1 strength. The γ\gamma SF and NLD are used as input parameters to Hauser–Feshbach calculations to constrain (n,γ)(\mathrm {n},\gamma ) cross sections of nuclei using the TALYS reaction code. These results are compared to 86Kr(n,γ)^{86}\mathrm {Kr}(n,\gamma ) data from direct measurements

    Nuclear level densities and γ\gamma-ray strength functions of 87Kr^{87}\mathrm{Kr} -- First application of the Oslo Method in inverse kinematics

    No full text
    The γ\gamma-ray strength function (γ\gammaSF) and nuclear level density (NLD) have been extracted for the first time from inverse kinematic reactions with the Oslo Method. This novel technique allows measurements of these properties across a wide range of previously inaccessible nuclei. Proton-γ\gamma coincidence events from the d(86Kr,pγ)87Kr\mathrm{d}(^{86}\mathrm{Kr}, \mathrm{p}\gamma)^{87}\mathrm{Kr} reaction were measured at iThemba LABS and the γ\gammaSF and NLD in 87Kr^{87}\mathrm{Kr} obtained. The low-energy region of the γ\gammaSF is compared to Shell Model calculations which suggest this region to be dominated by M1 strength. The γ\gammaSF and NLD are used as input parameters to Hauser-Feshbach calculations to constrain (n,γ)(\mathrm{n},\gamma) cross sections of nuclei using the TALYS reaction code. These results are compared to 86Kr(n,γ)^{86}\mathrm{Kr}(n,\gamma) data from direct measurements

    Nuclear Level Density and γ\gamma-ray Strength Function of 67Ni^{67}\mathrm{Ni} and the impact on the i-process

    No full text
    Proton-γ\gamma coincidences from (d,p)(\mathrm{d},\mathrm{p}) reactions between a 66Ni^{66}\mathrm{Ni} beam and a deuterated polyethylene target have been analyzed with the inverse-Oslo method to find the nuclear level density (NLD) and γ\gamma-ray strength function (γ\gammaSF) of 67Ni^{67}\mathrm{Ni}. The 66Ni(n,γ)^{66}\mathrm{Ni}(\mathrm{n},\gamma) capture cross section has been calculated using the Hauser-Feshbach model in TALYS using the measured NLD and γ\gammaSF as constraints. The results confirm that the 66Ni(n,γ)^{66}\mathrm{Ni}(\mathrm{n},\gamma) reaction acts as a bottleneck when relying on one-zone nucleosynthesis calculations. However, the impact of this reaction is strongly damped in multi-zone low-metallicity AGB stellar models experiencing i-process nucleosynthesis
    corecore