21 research outputs found

    Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations

    No full text
    Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation. © 2021 The Author

    Search for a massless particle beyond the Standard Model in the Σ+ → p + invisible decay

    No full text
    A massless particle beyond the Standard Model is searched for in the two-body decay ÎŁ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s=3.097GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(ÎŁ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models

    Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose–Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p–Pb as compared to pp collisions at similar multiplicity

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Λ c+ production in Pb–Pb collisions at s NN =5.02 TeV

    No full text
    AA measurement of the production of prompt Λ c + baryons in Pb–Pb collisions at s NN =5.02 TeV with the ALICE detector at the LHC is reported. The Λ c + and Λ‟ c − were reconstructed at midrapidity (|y|&lt;0.5) via the hadronic decay channel Λ c + →pK S 0 (and charge conjugate) in the transverse momentum and centrality intervals

    Coherent J/psi photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The ALICE collaboration performed the first rapidity-differential measurement of J/psi coherent photoproduction in ultra-peripheral Pb\u2013Pb collisions at a center-of-mass energy sqrt(sNN) = 5.02 TeV. The J/psi is detected via its dimuon decay in the forward rapidity region (-4.0 < y < -2.5) for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 750 \u3bcb 121. The cross section for J/psi coherent production is presented in six rapidity bins. The results are compared with theoretical models for J/psi coherent photoproduction. These comparisons indicate that gluon shadowing effects play a role in the photoproduction process. The ratio of psi' to J/psi coherent photoproduction cross sections was measured and found to be consistent with that measured for photoproduction off protons

    Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV and √s = 7 TeV. The RpPb is consistent with unity within uncertainties of about 25%, which become larger for pT below 1 GeV/c. The measurement shows that heavy-flavour production is consistent with binary scaling, so that a suppression in the high-pT yield in Pb–Pb collisions has to be attributed to effects induced by the hot medium produced in the final state. The data in p–Pb collisions are described by recent model calculations that include cold nuclear matter effects
    corecore