9 research outputs found

    Historical range contraction, and not taxonomy, explains the contemporary genetic structure of the Australian tree, Acacia dealbata Link

    Get PDF
    Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world.We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation.We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata

    Ghosts from the past: even comprehensive sampling of the native range may not be enough to unravel the introduction history of invasive species – the case of Acacia dealbata invasions in South Africa

    Get PDF
    PREMISE OF THE STUDY: Knowledge about the introduction history (source(s), number and size of introduction events) of an invasive species is a crucial prerequisite to understand invasion success and to facilitate effective and sustainable management approaches, especially for effective biological control. We investigated the introduction history of the Australian legume tree Acacia dealbata in South Africa. Results of this study will not only provide critical information for the management of this species in South Africa, but will also broaden our overall knowledge on the invasion ecology of this globally important invasive tree. METHODS: We used nuclear microsatellite markers to compare the genetic diversity and structure between 42 native Australian and 18 invasive South African populations and to test different and competing introduction scenarios using Approximate Bayesian Computation analyses. KEY RESULTS: Australian populations were characterized by two distinct genetic clusters, while South African populations lacked any clear genetic structure and showed significantly lower levels of genetic diversity compared to native range populations. South African populations were also genetically divergent from native populations and the most likely introduction scenario indicated an unknown source population. CONCLUSIONS: Although we cannot definitely prove the cause of the observed genetic novelty/diversification in South African Acacia dealbata populations, it cannot be attributable to insufficient sampling of native populations. Our study highlights the complexity of unravelling the introduction histories of commercially important alien species

    Human-mediated introductions of Australian acacias - a global experiment in biogeography

    No full text
    Aim Australian acacias (1012 recognized species native to Australia, which were previously grouped in Acacia subgenus Phyllodineae) have been moved extensively around the world by humans over the past 250years. This has created the opportunity to explore how evolutionary, ecological, historical and sociological factors interact to affect the distribution, usage, invasiveness and perceptions of a globally important group of plants. This editorial provides the background for the 20 papers in this special issue of Diversity and Distributions that focusses on the global cross-disciplinary experiment of introduced Australian acacias. Location Australia and global. Methods The papers of the special issue are discussed in the context of a unified framework for biological invasions. Distributions of species were mapped across Australia, their representation in bioclimatic zones examined and the potential global distribution of the group modelled. By collating a variety of different lists, we determined which Australian acacias have reached different stages in the introduction-naturalization-invasion continuum in different parts of the world. Paradigms and key research questions relating to barriers to invasion, stages of invasion and management perceptions are sketched. Results According to our global database of Australian acacia records, 386 species have been moved outside Australia by human agency, 71 species are naturalized or weedy, and 23 are unequivocally invasive. Climatic models suggest that about a third of the world's land surface is climatically suitable for Australian acacias. Many species are commercially important crops or are useful for other purposes and have been extensively planted, and many different human perceptions of Australian acacias exist in different parts of the world. The papers in the special issue cover all the barriers, stages and processes that define biological invasions and touch on many aspects: history and the human dimension; aspects of the species pool; species traits; biotic interactions; climate and niche; and management. Main conclusions Australian acacias are an excellent model group for examining interactions between evolutionary, ecological and socio-economic drivers of species introductions. New insights have emerged on the biological, ecological and evolutionary correlates of naturalization and invasion, but human usage factors permeate all explanatory models. Understanding and managing introduced Australian acacias requires a fundamental and integrative appreciation of both intrinsic (e.g. species traits) and extrinsic (e.g. human usage and perceptions) aspects. © 2011 Blackwell Publishing Ltd.Editoria

    Human-mediated introductions of Australian acacias – a global experiment in biogeography

    Get PDF
    Aim Australian acacias (1012 recognized species native to Australia, which were previously grouped in Acacia subgenus Phyllodineae) have been moved extensively around the world by humans over the past 250 years. This has created the opportunity to explore how evolutionary, ecological, historical and sociological factors interact to affect the distribution, usage, invasiveness and perceptions of a globally important group of plants. This editorial provides the background for the 20 papers in this special issue of Diversity and Distributions that focusses on the global cross-disciplinary experiment of introduced Australian acacias. Location Australia and global. Methods The papers of the special issue are discussed in the context of a unified framework for biological invasions. Distributions of species were mapped across Australia, their representation in bioclimatic zones examined and the potential global distribution of the group modelled. By collating a variety of different lists, we determined which Australian acacias have reached different stages in the introduction-naturalization-invasion continuum in different parts of the world. Paradigms and key research questions relating to barriers to invasion, stages of invasion and management perceptions are sketched. Results According to our global database of Australian acacia records, 386 species have been moved outside Australia by human agency, 71 species are naturalized or weedy, and 23 are unequivocally invasive. Climatic models suggest that about a third of the world’s land surface is climatically suitable for Australian acacias. Many species are commercially important crops or are useful for other purposes and have been extensively planted, and many different human perceptions of Australian acacias exist in different parts of the world. The papers in the special issue cover all the barriers, stages and processes that define biological invasions and touch on many aspects: history and the human dimension; aspects of the species pool; species traits; biotic interactions; climate and niche; and management. Main conclusions Australian acacias are an excellent model group for examining interactions between evolutionary, ecological and socio-economic drivers of species introductions. New insights have emerged on the biological, ecological and evolutionary correlates of naturalization and invasion, but human usage factors permeate all explanatory models. Understanding and managing introduced Australian acacias requires a fundamental and integrative appreciation of both intrinsic (e.g. species traits) and extrinsic (e.g. human usage and perceptions) aspects.Centre of Excellence for Invasion Biolog

    Risk assessment, eradication, and biological control: Global efforts to limit Australian acacia invasions

    No full text
    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new agents (notably vegetative feeders) can help mitigate existing widespread invasions. Trans-boundary sharing of information will assist efforts to limit future invasions, in particular, management strategies need to be better evaluated, monitored, published and publicised so that global best-practice procedures can be developed. © 2011 Blackwell Publishing Ltd

    Risk assessment, eradication, and biological control: Global efforts to limit Australian acacia invasions

    No full text
    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new agents (notably vegetative feeders) can help mitigate existing widespread invasions. Trans-boundary sharing of information will assist efforts to limit future invasions, in particular, management strategies need to be better evaluated, monitored, published and publicised so that global best-practice procedures can be developed. © 2011 Blackwell Publishing Ltd.Revie
    corecore