6 research outputs found

    The Hidden side of SERPINB1/Leukocyte Elastase Inhibitor

    Get PDF
    International audienceSERPINB1, also called Leukocyte Elastase Inhibitor (LEI) is amember of the clade B of SERPINS . It is an intracellular protein andacts primarily to protect the cell from proteases released into thecytoplasm during stress. Its role in inflammation is clear due to itsinvolvement in the resolution of chronic inflammatory lung and boweldiseases. LEI/SERPINB1 intrinsically possesses two enzymatic activities:an antiprotease activity dependent on its reactive site loop, which isanalogous to the other proteins of the family and an endonucleaseactivity which is unveiled by the cleavage of the reactive site loop. Theconformational change induced by this cleavage also unveils a bipartitenuclear localization signal allowing the protein to translocate to thenucleus. Recent data indicate that it has also a role in cell migrationsuggesting that it could be involved in diverse processes like woundhealing and malignant metastases

    Mechanisms of cell death in neurodegenerative and retinal diseases: common pathway?

    No full text
    International audienceThe review intends to draw the attention of researchers working in retinal degenerations on the fact that classical apoptosis, for example, apoptosis triggering caspase activation, may not be the main pathway of cellular demise in this tissue.Former work already showed the difficulty of proving the activation of apoptosis effectors in different models of retinal degeneration. However, these results were not really considered because of the lack of an alternative explanation for cell death. Nowadays, the description of many pathways of cellular demise is filling the gap and other forms of cell death are now described in the retina.The knowledge on the molecular mechanisms of cell death is very important for the development of new therapeutic strategies, as well as for the evaluation of cell death onset in retinal degeneration

    Retinal damage induced by commercial light emitting diodes (LEDs)

    Get PDF
    Spectra of "white LEDs" are characterized by an intense emission in the blue region of the visible spectrum, absent in daylight spectra. This blue component and the high intensity of emission are the main sources of concern about the health risks of LEDs with respect to their toxicity to the eye and the retina. The aim of our study was to elucidate the role of blue light from LEDs in retinal damage. Commercially available white LEDs and four different blue LEDs (507, 473, 467, and 449nm) were used for exposure experiments on Wistar rats. Immunohistochemical stain, transmission electron microscopy, and Western blot were used to exam the retinas. We evaluated LED-induced retinal cell damage by studying oxidative stress, stress response pathways, and the identification of cell death pathways. LED light caused a state of suffering of the retina with oxidative damage and retinal injury. We observed a loss of photoreceptors and the activation of caspase-independent apoptosis, necroptosis, and necrosis. A wavelength dependence of the effects was observed. Phototoxicity of LEDs on the retina is characterized by a strong damage of photoreceptors and by the induction of necrosis

    Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology

    No full text
    International audienceExposure Limit Values (ELV) for artificial lighting were defined in order to prevent light-induced damage to the retina. The evaluation of the lighting devices include the correction of their spectra by the B(λ) function or blue light hazard function, representing the relative spectral sensitivity of the human eye to the blue light. This weighting function peaks between 435 and 440 nm. In this study we evaluate a new generation of light emitting diode (LED), the GaN-on-GaN (gallium nitride on gallium nitride) LED, that present an emission peak in the purple part of the spectrum. Wistar rats were exposed to GaN-on-GaN and conventional diodes at different retinal doses (from 2.2 to 0.5 J/cm2). We show that GaN-on-GaN diodes are more toxic than conventional LED for the rat neural retina and the rat retinal pigment epithelium, indicating that the BLH (blue light hazard) weighting is not adapted to this type of diodes. One of the reasons of this increased toxicity is the effects of shorter wavelengths on mitochondria polarization. We also show that the threshold of phototoxic retinal dose in the rat (fixed at 11 J/cm2, BLH weighted) is overestimated, suggesting that the values used for regulations, calculated in primates using the same methods than in rats, should be revised

    Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo

    No full text
    International audienceAgeing and alteration of the functions of the retinal pigment epithelium (RPE) are at the origin of lost of vision seen in age-related macular degeneration (AMD). The RPE is known to be vulnerable to high-energy blue light. The white light-emitting diodes (LED) commercially available have relatively high content of blue light, a feature that suggest that they could be deleterious for this retinal cell layer. The aim of our study was to investigate the effects of "white LED" exposure on RPE. For this, commercially available white LEDs were used for exposure experiments on Wistar rats. Immunohistochemical stain on RPE flat mount, transmission electron microscopy and Western blot were used to exam the RPE. LED-induced RPE damage was evaluated by studying oxidative stress, stress response pathways and cell death pathways as well as the integrity of the outer blood-retinal barrier (BRB). We show that white LED light caused structural alterations leading to the disruption of the outer blood-retinal barrier. We observed an increase in oxidized molecules, disturbance of basal autophagy and cell death by necrosis. We conclude that white LEDs induced strong damages in rat RPE characterized by the breakdown of the BRB and the induction of necrotic cell death
    corecore