50 research outputs found
High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa
Background: Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes.
Results: Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4.
Conclusions: High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae
Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb-1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria
An easy "SteamDrop" method for high quality plant chromosome preparation
BACKGROUND: The chromosome preparation is a crucial step for obtaining satisfactory results in molecular cytogenetic researches. The preparation of plant chromosomes for molecular cytogenetic purposes remains a challenge for some species. In contrast to human chromosome preparation, the processes occurring during plant chromosome preparation and causing chromosome spreading are still poorly understood. RESULTS: We studied the dynamics of plant chromosome spreading after dropping cell suspension on slides. We showed that steam stimulates cytoplasm hydrolysis and rapid chromosome spreading and that chromosomes stretch during this chromosome spreading. Based on these observations, we developed a novel method, named “SteamDrop”, for the preparation of well-spread mitotic and pachytene chromosomes and successfully used it for 28 plant species with large and small chromosomes. We applied cell suspensions in ethanol instead of the commonly used ethanol/acetic acid fixative. Mitotic and meiotic chromosomes prepared via “SteamDrop” were used in fluorescent in situ hybridization (FISH) experiments with repetitive and unique DNA probes. Long storage of cell suspensions in ethanol did not impair the quality of chromosome preparations. CONCLUSION: The SteamDrop procedure provides a robust and routine method for high quality plant chromosome preparations. The method can be applied for metaphase as well as pachytene chromosome preparation in wide range of species. The chromosomes prepared by SteamDrop are well suitable for repetitive and unique DNA visualization
Towards a FISH-based karyotype of Rosa L. (Rosaceae)
The genus Rosa Linnaeus, 1753 has important economic value in ornamental sector and many breeding activities are going on supported by molecular studies. However, the cytogenetic studies of rose specks are scarce and mainly focused on chromosome counting and chromosome morphology-based karyotyping. Due to the small size of the chromosomes and a high frequency of polyploidy in the genus, karyotyping is very challenging for rose species and requires FISH-based cytogenetic markers to be applied. Therefore, in this work the aim is to establish a FISH-based karyotype for Rosa wichurana (Crepin, 1888), a rose species with several benefits for advanced molecular cytogenetic studies of genus Rosa (Kirov et al. 2015a). It is shown that FISH signals from 5S, 45S and an Arabidopsis-type telomeric repeat are distributed on five (1, 2, 4, 5 and 7) of seven chromosome pairs. In addition, it is demonstrated that the interstitial telomeric repeat sequences (ITR) are located in the centromeric regions of four chromosome pairs. Using low hybridization stringency for ITR visualization, we showed that the number of ITR signals increases four times (1-4 signals). This study is the first to propose a FISH-based R. wichurana katyotype for the reliable identification of chromosomes. The possible origin of R wichurana ITR loci is discussed
Analysis of Wheat Bread-Making Gene (wbm) Evolution and Occurrence in Triticale Collection Reveal Origin via Interspecific Introgression into Chromosome 7AL
Bread-making quality is a crucial trait for wheat and triticale breeding. Several genes significantly influence these characteristics, including glutenin genes and the wheat bread-making (wbm) gene. World wheat collection screening showed that only a few percent of cultivars carry the valuable wbm variant, providing a useful source for wheat breeding. In contrast, no such analysis has been performed for triticale (wheat (AABB genome) × rye (RR) amphidiploid) collections. Despite the importance of the wbm gene, information about its origin and genomic organization is lacking. Here, using modern genomic resources available for wheat and its relatives, as well as PCR screening, we aimed to examine the evolution of the wbm gene and its appearance in the triticale genotype collection. Bioinformatics analysis revealed that the wheat Chinese Spring genome does not have the wbm gene but instead possesses the orthologous gene, called wbm-like located on chromosome 7A. The analysis of upstream and downstream regions revealed the insertion of LINE1 (Long Interspersed Nuclear Elements) retrotransposons and Mutator DNA transposon in close vicinity to wbm-like. Comparative analysis of the wbm-like region in wheat genotypes and closely related species showed low similarity between the wbm locus and other sequences, suggesting that wbm originated via introgression from unknown species. PCR markers were developed to distinguish wbm and wbm-like sequences, and triticale collection was screened resulting in the detection of three genotypes carrying wbm-specific introgression, providing a useful source for triticale breeding programs
Transposons Hidden in Arabidopsis thaliana Genome Assembly Gaps and Mobilization of Non-Autonomous LTR Retrotransposons Unravelled by Nanotei Pipeline
Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana (TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540) belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant genomes using low-coverage data from Nanopore genome sequencing
Pilot satellitome analysis of the model plant, Physcomitrella patens, revealed a transcribed and high-copy IGS related tandem repeat
Satellite DNA (satDNA) constitutes a substantial part of eukaryotic genomes. In the last decade, it has been shown that satDNA is not an inert part of the genome and its function extends beyond the nuclear membrane. However, the number of model plant species suitable for studying the novel horizons of satDNA functionality is low. Here, we explored the satellitome of the model “basal” plant, Physcomitrella patens (Hedwig, 1801) Bruch & Schimper, 1849 (moss), which has a number of advantages for deep functional and evolutionary research. Using a newly developed pyTanFinder pipeline (https://github.com/Kirovez/pyTanFinder) coupled with fluorescence in situ hybridization (FISH), we identified five high copy number tandem repeats (TRs) occupying a long DNA array in the moss genome. The nuclear organization study revealed that two TRs had distinct locations in the moss genome, concentrating in the heterochromatin and knob-rDNA like chromatin bodies. Further genomic, epigenetic and transcriptomic analysis showed that one TR, named PpNATR76, was located in the intergenic spacer (IGS) region and transcribed into long non-coding RNAs (lncRNAs). Several specific features of PpNATR76 lncRNAs make them very similar with the recently discovered human lncRNAs, raising a number of questions for future studies. This work provides new resources for functional studies of satellitome in plants using the model organism P. patens, and describes a list of tandem repeats for further analysis
Long-read sequencing of extrachromosomal circular DNA and genome assembly of a Solanum lycopersicum breeding line revealed active LTR retrotransposons originating from S. Peruvianum L. introgressions
Abstract Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species
Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages
Developing seed is a unique stage of plant development with highly dynamic changes in transcriptome. Here, we aimed to detect the novel previously unannotated, genes of the triticale (x Triticosecale Wittmack, AABBRR genome constitution) genome that are expressed during different stages and at different parts of the developing seed. For this, we carried out the Oxford Nanopore sequencing of cDNA obtained for middle (15 days post-anthesis, dpa) and late (20 dpa) stages of seed development. The obtained data together with our previous direct RNA sequencing of early stage (10 dpa) of seed development revealed 39,914 expressed genes including 7128 (17.6%) genes that were not previously annotated in A, B, and R genomes. The bioinformatic analysis showed that the identified genes belonged to long non-coding RNAs (lncRNAs), protein-coding RNAs, and TE-derived RNAs. The gene set analysis revealed the transcriptome dynamics during seed development with distinct patterns of over-represented gene functions in early and middle/late stages. We performed analysis of the lncRNA genes polymorphism and showed that the genes of some of the tested lncRNAs are indeed polymorphic in the triticale collection. Altogether, our results provide information on thousands of novel loci expressed during seed development that can be used as new targets for GWAS analysis, the marker-assisted breeding of triticale, and functional elucidation
Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages
Developing seed is a unique stage of plant development with highly dynamic changes in transcriptome. Here, we aimed to detect the novel previously unannotated, genes of the triticale (x Triticosecale Wittmack, AABBRR genome constitution) genome that are expressed during different stages and at different parts of the developing seed. For this, we carried out the Oxford Nanopore sequencing of cDNA obtained for middle (15 days post-anthesis, dpa) and late (20 dpa) stages of seed development. The obtained data together with our previous direct RNA sequencing of early stage (10 dpa) of seed development revealed 39,914 expressed genes including 7128 (17.6%) genes that were not previously annotated in A, B, and R genomes. The bioinformatic analysis showed that the identified genes belonged to long non-coding RNAs (lncRNAs), protein-coding RNAs, and TE-derived RNAs. The gene set analysis revealed the transcriptome dynamics during seed development with distinct patterns of over-represented gene functions in early and middle/late stages. We performed analysis of the lncRNA genes polymorphism and showed that the genes of some of the tested lncRNAs are indeed polymorphic in the triticale collection. Altogether, our results provide information on thousands of novel loci expressed during seed development that can be used as new targets for GWAS analysis, the marker-assisted breeding of triticale, and functional elucidation