26 research outputs found
Optical Cryptanalysis: Recovering Cryptographic Keys from Power LED Light Fluctuations
Although power LEDs have been integrated in various
devices that perform cryptographic operations for decades, the
cryptanalysis risk they pose has not yet been investigated.
In this paper, we present optical cryptanalysis, a new form
of cryptanalytic side-channel attack, in which secret keys are
extracted by using a photodiode to measure the light emitted
by a device’s power LED and analyzing subtle fluctuations in
the light intensity during cryptographic operations. We analyze
the optical leakage of power LEDs of various consumer
devices and the factors that affect the optical SNR. We then
demonstrate end-to-end optical cryptanalytic attacks against
a range of consumer devices (smartphone, smartcard, and
Raspberry Pi, along with their USB peripherals) and recover
secret keys (RSA, ECDSA, SIKE) from prior and recent
versions of popular cryptographic libraries (GnuPG, Libgcrypt,
PQCrypto-SIDH) from a maximum distance of 25 meter
Word-As-Image for Semantic Typography
A word-as-image is a semantic typography technique where a word illustration presents a visualization of the meaning of the word, while also preserving its readability. We present a method to create word-as-image illustrations automatically. This task is highly challenging as it requires semantic understanding of the word and a creative idea of where and how to depict these semantics in a visually pleasing and legible manner. We rely on the remarkable ability of recent large pretrained language-vision models to distill textual concepts visually. We target simple, concise, black-and-white designs that convey the semantics clearly. We deliberately do not change the color or texture of the letters and do not use embellishments. Our method optimizes the outline of each letter to convey the desired concept, guided by a pretrained Stable Diffusion model. We incorporate additional loss terms to ensure the legibility of the text and the preservation of the style of the font. We show high quality and engaging results on numerous examples and compare to alternative techniques. Code and demo will be available at our project page
Video-Based Cryptanalysis: Extracting Cryptographic Keys from Video Footage of a Device’s Power LED
In this paper, we present video-based cryptanalysis,
a new method used to recover secret keys from a device by
analyzing video footage of a device’s power LED. We show that
cryptographic computations performed by the CPU change the
power consumption of the device which affects the brightness of
the device’s power LED. Based on this observation, we show how
attackers can exploit commercial video cameras (e.g., an iPhone
13’s camera or Internet-connected security camera) to recover
secret keys from devices. This is done by obtaining video footage
of a device’s power LED (in which the frame is filled with the
power LED) and exploiting the video camera’s rolling shutter
to increase the sampling rate by three orders of magnitude
from the FPS rate (60 measurements per second) to the rolling
shutter speed (60K measurements per second in the iPhone 13
Pro Max). The frames of the video footage of the device’s power
LED are analyzed in the RGB space, and the associated RGB
values are used to recover the secret key by inducing the power
consumption of the device from the RGB values. We demonstrate
the application of video-based cryptanalysis by performing two
side-channel cryptanalytic timing attacks and recover: (1) a 256-
bit ECDSA key from a smart card by analyzing video footage of
the power LED of a smart card reader via a hijacked Internet-connected security camera located 16 meters away from the smart
card reader, and (2) a 378-bit SIKE key from a Samsung Galaxy
S8 by analyzing video footage of the power LED of Logitech Z120
USB speakers that were connected to the same USB hub (that
was used to charge the Galaxy S8) via an iPhone 13 Pro Max.
Finally, we discuss countermeasures, limitations, and the future
of video-based cryptanalysis in light of the expected improvements
in video cameras’ specifications
Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner
Cells encountering hypoxic stress conserve resources and energy by downregulating the protein synthesis. Here we demonstrate that one mechanism in this response is the translational repression of TOP mRNAs that encode components of the translational apparatus. This mode of regulation involves TSC and Rheb, as knockout of TSC1 or TSC2 or overexpression of Rheb rescued TOP mRNA translation in oxygen-deprived cells. Stress-induced translational repression of these mRNAs closely correlates with the hypophosphorylated state of 4E-BP, a translational repressor. However, a series of 4E-BP loss- and gain-of-function experiments disprove a cause-and-effect relationship between the phosphorylation status of 4E-BP and the translational repression of TOP mRNAs under oxygen or growth factor deprivation. Furthermore, the repressive effect of anoxia is similar to that attained by the very efficient inhibition of mTOR activity by Torin 1, but much more pronounced than raptor or rictor knockout. Likewise, deficiency of raptor or rictor, even though it mildly downregulated basal translation efficiency of TOP mRNAs, failed to suppress the oxygen-mediated translational activation of TOP mRNAs. Finally, co-knockdown of TIA-1 and TIAR, two RNA-binding proteins previously implicated in translational repression of TOP mRNAs in amino acid-starved cells, failed to relieve TOP mRNA translation under other stress conditions. Thus, the nature of the proximal translational regulator of TOP mRNAs remains elusive