57 research outputs found

    Comparison of indicators of the use of insulin and oral diabetes medication in a Polish population of patients in urban and rural areas in the years 2008, 2011 and 2012

    Get PDF
    introduction. Diabetes is one of the 10 most important chronic diseases in the world. According to the data of the International Diabetes Federation, in Poland 9% of the population between the ages of 20–79 suffer from diabetes. objective. The aim of this study was to investigate the differences in the prevalence of diabetes in urban and rural areas in Poland, and the preparation of a model describing the phenomenon. materials and method. Differences between urban and rural areas were studied for the occurrence of patients treated with diabetes per 100,000 inhabitants, the number of patients, structure of treatment per the used products, and the costs of reimbursement of treatment products between 2008–2012. Urban and rural cases were compared using zip codes. The basis for classifying a patient as being an inhabitant of an urban or rural area was an urban zip code of the declared place of residence. results. Differences were observed both between various areas of Poland, as well as depending on whether the declared place of residence of the patient was urban or rural. Differences between urban and rural areas within the studied period have increased. The difference in the prevalence of diabetes among the inhabitants of Podlaskie, Śląskie or Świętokrzyskie provinces is striking. conclusion. Differences between urban and rural areas which depend on morbidity and detection of patients in the earlier phase of illness, the structures of medical technologies used in the treatment process, the number of purchased pharmaceuticals, enable better monitoring of effectiveness and quality of politics on prevention and treatment of chronic diseases. It is important for the creation of a health policy to devise a system of indicators, which will enable a decrease in the existing differences between regions, and between the urban and rural areas within the provinces

    Glove failure in elective thyroid surgery: A prospective randomized study

    Full text link
    Objectives: To analyze perforation rate in sterile gloves used by surgeons in the operating theatre of the Department of Endocrinological and General Surgery of Medical University of Lodz. Material and Methods: Randomized and controlled trial. This study analyses the incidents of tears in sterile surgical gloves used by surgeons during operations on 3 types of thyroid diseases according to the 10th revision of International Statistical Classification of Diseases and Related Health Problems (ICD-10) codes. Nine hundred seventy-two pairs (sets) of gloves were collected from 321 surgical procedures. All gloves were tested immediately following surgery using the water leak test (EN455-1) to detect leakage. Results: Glove perforation was detected in 89 of 972 glove sets (9.2%). Statistically relevant more often glove tears occurred in operator than the 1st assistant (p < 0.001). The sites of perforation were localized mostly on the middle finger of the non-dominant hand (22.5%), and the non-dominant ring finger (17.9%). Conclusions: This study has proved that the role performed by the surgeon during the procedure (operator, 1st assistant) has significant influence on the risk of glove perforations. Nearly 90% of glove perforations are unnoticed during surgery

    Homogénéisation périodique d'un matériau élastoplastique compressible anisotrope : application aux structures sandwichs à coeur cellulaire

    Get PDF
    Grâce à leurs bonnes propriétés mécaniques spécifiques, les matériaux cellulaires architecturés présentent un fort intérêt pour répondre aux problématiques du secteur aéronautique, notamment pour la tenue structurale et la résistance à l'impact. De par leurs architectures, ces matériaux présentent en général trois échelles caractéristiques: l'échelle macroscopique de la structure, l'échelle mésoscopique associée à la cellule élémentaire et l'échelle microscopique liée au matériau constitutif. La modélisation d'architectures de grande dimension est difficile à mettre en oeuvre car couteuse en temps de calcul. Pour contourner ce problème, la mise en place d'une modélisation multi-échelle basée sur l'identification d'une Loi Homogène Equivalente (LHE) est proposée. L'étude du comportement multi-axial du matériau cellulaire à l'échelle de son Volume Elémentaire Représentatif (VER) nous permet, par homogénéisation périodique, d'expliciter le comportement macroscopique et d'identifier une LHE compressible et anisotrope. La structure sandwich est ensuite modélisée en remplaçant le coeur cellulaire par un Milieu Homogène Equivalent (MHE). Pour des cas de chargements quasi-statiques, l'influence des effets de bords sur le comportement macroscopique de la structure en fonction des différents types d'empilement des tubes, de la taille des structures sandwichs et du type de chargement a été analysée. La méthode donne des résultats satisfaisants mais présente des limites quant à la validité de la séparation des échelles, indispensable à l'approche par homogénéisation, il est donc envisagé d'enrichir la méthode par les milieux continus généralisés pour mieux prendre en compte les phénomènes induits par la localisation des déformations. Une confrontation avec des essais mécaniques sera entreprise pour discuter de la validité des modèles proposés, avec une extension progressive à des chargements dynamiques

    Computational Homogenization of Architectured Materials

    Get PDF
    Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials

    Periodic homogenisation of a cellular material in elastoplasticity and application to structural modelling : from small to large deformations

    No full text
    Grâce à leurs bonnes propriétés mécaniques spécifiques, les matériaux cellulaires architecturés présentent un fort intérêt pour répondre aux problématiques du secteur aéronautique. Cependant, la modélisation d'une structure macroscopique incluant un matériau cellulaire nécessite, soit de modéliser complètement l'architecture à l'échelle mésoscopique - ce qui est coûteux en temps de calcul - soit d'utiliser un Milieu Homogène Equivalent (MHE). Ainsi, cette thèse propose de caractériser un matériau cellulaire modèle constitué d'un empilement de tubes, selon un motif carré ou hexagonal, puis d'identifier un modèle phénoménologique rendant compte du comportement mécanique inélastique du matériau. Dans un premier temps, le matériau est caractérisé sous chargements multi-axiaux à l'aide de simulations éléments finis périodiques en petites déformations. Le comportement homogénéisé en petites déformations est ensuite utilisé pour l'identification d'une Loi Homogène Equivalente (LHE) compressible et anisotrope, qui permet la modélisation de structures sandwichs en remplaçant le coeur cellulaire par son MHE. Une comparaison est réalisée entre les réponses mécaniques des simulations de référence complètement maillées et celles utilisant l'approche par MHE, validant ainsi la pertinence de la méthode multi-échelle de modélisation proposée. La caractérisation en grandes déformations des deux types d'empilement est ensuite menée. D'abord, les effets de bords et les instabilités qui gouvernent le comportement macroscopique sont étudiés. Puis, après une étude du volume élémentaire représentatif des empilements, la caractérisation du comportement inélastique par la technique de l'homogénéisation périodique est réalisée. Le comportement adoucissant en compression de l'empilement hexagonal est ainsi étudié. Finalement, une extension des LHE identifiées en petites déformations est proposée pour rendre compte du comportement en compression du matériau observé en grandes déformations.Cellular materials have excellent specific properties, which make them attractive for aeronautical applications. However, modelling macroscopic structures including a cellular material is either very costly in terms of computational time if the whole mesoscopic structure is considered or a Homogeneous Equivalent Medium (HEM) has to be used. This Ph.D. dissertation presents, the characterisation of a cellular material built from a stacking of tubes with a square or hexagonal based pattern and the identification of a phenomenological model of their inelastic mechanical behaviour. First, the material is characterised for multi-axial loadings through a periodic finite element model in small deformations for each tube stacking pattern. The macroscopic behaviour is then used to identify a compressible anisotropic Homogeneous Equivalent Law (HEL). Within the infinitesimal strain hypothesis, a comparison is carried out between reference full scale models and HEM based ones of sandwich structures with a cellular core, confirming the relevance of the proposed multi-scale method. Then, the mechanical behaviour of each tube stacking is characterised for large deformations in order to study the influence of the boundary size effects and the instabilities in the core on the macroscopic behaviour of sandwich structures. After a study on the representative volume element, the macroscopic inelastic behaviour is characterised through the periodic homogenisation technique, especially the softening observed in compression for the hexagonal pattern. Finally, an extension of the HELs identified in small deformations is proposed to model the behaviour observed in large deformations

    Homogénéisation périodique d’un matériau cellulaire en élasto-plasticité et application au calcul de structures : des petites aux grandes déformations

    No full text
    Cellular materials have excellent specific properties, which make them attractive for aeronautical applications. However, modelling macroscopic structures including a cellular material is either very costly in terms of computational time if the whole mesoscopic structure is considered or a Homogeneous Equivalent Medium (HEM) has to be used. This Ph.D. dissertation presents, the characterisation of a cellular material built from a stacking of tubes with a square or hexagonal based pattern and the identification of a phenomenological model of their inelastic mechanical behaviour. First, the material is characterised for multi-axial loadings through a periodic finite element model in small deformations for each tube stacking pattern. The macroscopic behaviour is then used to identify a compressible anisotropic Homogeneous Equivalent Law (HEL). Within the infinitesimal strain hypothesis, a comparison is carried out between reference full scale models and HEM based ones of sandwich structures with a cellular core, confirming the relevance of the proposed multi-scale method. Then, the mechanical behaviour of each tube stacking is characterised for large deformations in order to study the influence of the boundary size effects and the instabilities in the core on the macroscopic behaviour of sandwich structures. After a study on the representative volume element, the macroscopic inelastic behaviour is characterised through the periodic homogenisation technique, especially the softening observed in compression for the hexagonal pattern. Finally, an extension of the HELs identified in small deformations is proposed to model the behaviour observed in large deformations.Grâce à leurs bonnes propriétés mécaniques spécifiques, les matériaux cellulaires architecturés présentent un fort intérêt pour répondre aux problématiques du secteur aéronautique. Cependant, la modélisation d'une structure macroscopique incluant un matériau cellulaire nécessite, soit de modéliser complètement l'architecture à l'échelle mésoscopique - ce qui est coûteux en temps de calcul - soit d'utiliser un Milieu Homogène Equivalent (MHE). Ainsi, cette thèse propose de caractériser un matériau cellulaire modèle constitué d'un empilement de tubes, selon un motif carré ou hexagonal, puis d'identifier un modèle phénoménologique rendant compte du comportement mécanique inélastique du matériau. Dans un premier temps, le matériau est caractérisé sous chargements multi-axiaux à l'aide de simulations éléments finis périodiques en petites déformations. Le comportement homogénéisé en petites déformations est ensuite utilisé pour l'identification d'une Loi Homogène Equivalente (LHE) compressible et anisotrope, qui permet la modélisation de structures sandwichs en remplaçant le coeur cellulaire par son MHE. Une comparaison est réalisée entre les réponses mécaniques des simulations de référence complètement maillées et celles utilisant l'approche par MHE, validant ainsi la pertinence de la méthode multi-échelle de modélisation proposée. La caractérisation en grandes déformations des deux types d'empilement est ensuite menée. D'abord, les effets de bords et les instabilités qui gouvernent le comportement macroscopique sont étudiés. Puis, après une étude du volume élémentaire représentatif des empilements, la caractérisation du comportement inélastique par la technique de l'homogénéisation périodique est réalisée. Le comportement adoucissant en compression de l'empilement hexagonal est ainsi étudié. Finalement, une extension des LHE identifiées en petites déformations est proposée pour rendre compte du comportement en compression du matériau observé en grandes déformations

    International Conference on Computer Systems and Technologies- CompSysTech’2003 Bottom-Up Method for Processing Recursive Sets of Rules

    No full text
    Abstract: The paper proposes a semi-naive method for processing recursive loops in the dependency graph for a given query. The process goes through two phases. During the expand phase answers are generated using translation to base conjunctions. Entries in recursive predicates with undistinguished arguments are also stored in the database for further processing. During the shrink phase the occurrences of recursive predicates in rule-bodies are replaced with the answers already generated during the expand phase. Thus, the whole rule-body becomes a base conjunction, which generates new answers. The proposed method is suitable for queries with bound arguments. It reduces unnecessary computations and generates only facts relevant to the given query. Key words: deductive databases, logic programming, knowledge-based systems, algorithm

    Differences in Financing of Admission Rooms (ARs) and Hospital Emergency Rooms (ERs) Between the Years 2013 and 2014, Using an Example of a Lodz Municipal Hospital

    No full text
    The goal of the article is to compare methods of financing ARs and ERs based on the data from the 1st half of 2013 and 1st half of 2014 from the K. Jonscher 3rd Municipal Hospital in Lodz. All the stays in the AR/ER in the 1st half of 2013 and the 1st half of 2014 were analysed. Based on the presented data, it can be clearly seen that the new method of financing AR/ER services proposed by the NFZ will beyond doubt have negative outcomes, and will certainly not improve the financial situation of hospitals

    Computational homogenisation of periodic cellular materials: Application to structural modelling

    No full text
    International audienceThe present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here, the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have been simulated, through the finite element method, on representative volume elements of such periodic stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their cores. A systematic comparison, between the results obtained from the fully meshed structures and those obtained from the structures whose core has been replaced with its HEM, allows us to address the limitations of the HEM-based approach and the boundary layer effects observed on finite structures
    corecore