69 research outputs found

    Proper orthogonal decomposition closure models for fluid flows: Burgers equation

    Full text link
    This paper puts forth several closure models for the proper orthogonal decomposition (POD) reduced order modeling of fluid flows. These new closure models, together with other standard closure models, are investigated in the numerical simulation of the Burgers equation. This simplified setting represents just the first step in the investigation of the new closure models. It allows a thorough assessment of the performance of the new models, including a parameter sensitivity study. Two challenging test problems displaying moving shock waves are chosen in the numerical investigation. The closure models and a standard Galerkin POD reduced order model are benchmarked against the fine resolution numerical simulation. Both numerical accuracy and computational efficiency are used to assess the performance of the models

    A Two-Level Finite Element Discretization of the Streamfunction Formulation of the Stationary Quasi-Geostrophic Equations of the Ocean

    Get PDF
    In this paper we proposed a two-level finite element discretization of the nonlinear stationary quasi-geostrophic equations, which model the wind driven large scale ocean circulation. Optimal error estimates for the two-level finite element discretization were derived. Numerical experiments for the two-level algorithm with the Argyris finite element were also carried out. The numerical results verified the theoretical error estimates and showed that, for the appropriate scaling between the coarse and fine mesh sizes, the two-level algorithm significantly decreases the computational time of the standard one-level algorithm.Comment: Computers and Mathematics with Applications 66 201
    • …
    corecore