9 research outputs found

    Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants

    Get PDF
    Purpose: Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods: We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score &gt; 15 and frequency in GnomAD &lt; 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results: We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients.Discussion: We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.</p

    Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants

    Get PDF
    Purpose: Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods: We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results: We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion: We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications

    Retinal pigment epithelium tear through the fovea with maintained visual acuity of 20/20

    No full text

    AZOOR - A 10-year follow-up

    No full text

    Assessment of Anterior Uveitis Through Anterior-Segment Optical Coherence Tomography and Artificial Intelligence-Based Image Analyses

    No full text
    PURPOSE: The purpose of this study was to develop an automated artificial intelligence (AI) based method to quantify inflammation in the anterior chamber (AC) using anterior-segment optical coherence tomography (AS-OCT) and to explore the correlation between AI assisted AS-OCT based inflammation analyses and clinical grading of anterior uveitis by Standardization of Uveitis Nomenclature (SUN). METHODS: A prospective double blinded study of AS-OCT images of 32 eyes of 19 patients acquired by Tomey CASIA-II. OCT images were analyzed with proprietary AI-based software. Anatomic boundaries of the AC were segmented automatically by the AI software and Spearman's rank correlation between parameters related to AC cellular inflammation were calculated. RESULTS: No significant (p = 0.6602) differences were found between the analyzed AC areas between samples of the different SUN grading, suggesting accurate and unbiased border detection/AC segmentation. Segmented AC areas were processed by the AI software and particles within the borders of AC were automatically counted by the software. Statistical analysis found significant (p < 0.001) correlation between clinical SUN grading and AI software detected particle count (Spearman ρ = 0.7077) and particle density (Spearman ρ = 0.7035). Significant (p < 0.001) correlation (Pearson's r = 0.9948) between manually and AI detected particles was found. No significant (p = 0.8080) difference was found between the sizes of the AI detected particles for all studies. CONCLUSIONS: AI-based image analysis of AS-OCT slides show significant and independent correlation with clinical SUN assessment. TRANSLATIONAL RELEVANCE: Automated AI-based AS-OCT image analysis suggests a noninvasive and quantitative assessment of AC inflammation with clear potential application in early detection and management of anterior uveitis

    Iron overload and iron chelating agent exposure in anemia-associated outer retinal degeneration:a case report and review of the literature

    No full text
    BACKGROUND: Deferoxamine retinopathy is the informally designated term used to describe a characteristic pattern of outer retinal degeneration in iron-overloaded chronic anemia patients who are treated with deferoxamine. We hypothesize that insufficiently treated iron overloading and not only deferoxamine is the cause of the retinal degeneration. Our case report is based on exposure histories of two anemia patients and literature review. CASE PRESENTATION: Both anemia patients presented with bilateral visual loss secondary to photoreceptor and retinal pigment epithelium degeneration. Chart review showed that visual loss came after a year-long slow, and rather monotonous rise in plasma ferritin concentrations, with no obvious relation to iron chelator exposure. In one patient, the onset of symptomatic visual loss came after a bout of fever followed by two additional febrile episodes, all accompanied by plasma ferritin spikes. Adjustment of iron chelation therapy did not improve visual function. Experimental studies clearly show that both systemic and intraocular exposure to iron ions can induce retinal degeneration. CONCLUSION: The available evidence indicates that retinal degeneration in chronic anemia patients treated by deferoxamine is cause by insufficient iron chelation, not by deferoxamine. The actual role of iron chelating agents may be to promote a long enough survival to allow the slow development of retinal siderosis
    corecore