872 research outputs found

    A Model Iron Gall Ink: An In-Depth Study of Ageing Processes Involving Gallic Acid

    Get PDF
    Iron gall inks have been among the most used writing materials after carbon black, thus representing an important element of the historical and artistic heritage of our society. Crucially, the preservation of manuscripts and drawings is influenced by the presence of these inks, leading to conservation issues related to paper degradation and text fading. Besides all the advances obtained in paper conservation, the study of iron gall ink's behaviour and ageing is still an important topic, which requires investigation through an accurate molecular characterisation to produce reliable models. In the present work a micro-destructive method based on liquid chromatography techniques (HPLC-DAD and HPLC-ESI-Q-ToF) has been optimised starting from a model gallic acid-based ink. An in-depth study of the behaviour of the ink in time was performed by natural and artificial ageing tests, monitored by colorimetry, showing the autoxidation of gallic acid to ellagic acid in the prepared mock-ups. The effect of relative humidity on ageing processes was also evaluated, allowing us to determine different intermediates depending on the environmental conditions. Finally, the analytical method developed was then successfully applied for investigating 19th-20th century historical ink samples, where one of the identified ageing markers was detected, besides the expected gallic and ellagic acids

    Development and Optimisation of an HPLC-DAD-ESI-QToF Method for the Determination of Phenolic Acids and Derivatives

    Get PDF
    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects

    An integrated approach to the study of Ri de pomme, a painting by Julian Schnabel

    Get PDF
    The painting Ri de Pomme (1988) by American artist Julian Schnabel was recently subjected to an extensive and disputed restoration with polyvinyl acetate (PVAc) paints. To characterize and locate on the painting the materials used in the original and in the repainted areas, we employed several spectroscopic and chromatographic techniques. Fibre Optics Reflectance Spectroscopy (FORS), Micro-Raman, Pyrolysis-Gas Chromatography/Mass Spectrometry (Py- GC/MS) and Gas Chromatography/Mass Spectrometry (GC/MS) were used. The original and restoration paint layers were differentiated by a preliminary FORS survey. The pigments were studied with Micro-Raman and the oil binder was characterized by GC/MS. Moreover, the support of the painting, a weathered tarpaulin, was characterized by Py-GC/MS

    Model study of modern oil-based paint media by triacylglycerols profiling in positive and negative ionization modes

    Get PDF
    Lipid binders have traditionally been determined in paintings by using gas chromatography/mass spectrometry (GC/MS) to identify the characteristic profiles and ratios of fatty acids . However, the presence of mixtures in contemporary and modern oil paints makes the GC/MS determination of fatty acids insufficient to fully characterize the lipid binding media. In this study we prove that triacylglycerol (TAG) profiling by high-performance liquid chromatography with high-resolution tandem mass spectrometry, using ESI in positive and negative ionization modes is highly effective. We exploited this analytical approach to study the curing and degradation processes undergone by six plant oils used in the formulation of media in modern paints, using both natural and artificial ageing experiments. We believe that is the first time that a negative ionization mode has been applied for this purpose and that a survey with HPLC-ESI-Q-ToF has been carried out to study the ageing kinetics of plant oils. TAG profiling enabled us to study the evolution over time of the constituents of modern oils, with respect to curing and ageing. The data analyzed in this study demonstrate that our approach is efficient to study the oxidation of TAGs during ageing. The data also improve current knowledge on the properties of vegetable oils, which could lead to the development of new paint materials and conservation treatments for modern and contemporary works of art

    Heritage science contribution to the understanding of meaningful khipu colours

    Get PDF
    Funding: Financial support by the Access to Research Infrastructures activity in the Horizon 2020 Programme of the EU (IPERION HS Grant Agreement n.871034) is gratefully acknowledged.This work is the first scientific study of khipu dyes and inorganic mordants and auxiliaries, paving the way for a new approach to understanding khipus’ meaningful materiality, technology, and colours. Khipus have usually been described as “Andean knotted records”, but they are much more than complex knotted cords: a great part of the information encoded resides in khipus’ incredible colours. The objects of this study are two Wari khipus, 1932.08.0001 and 1932.08.0002, now at the Museum of World Culture in Gothenburg, Sweden. After a morphological study of the khipus, the objects were imaged with multiband imaging (MBI) as an aid for the sampling decisional process. The khipus were then analysed non-invasively by X-ray fluorescence (XRF) spectroscopy on selected areas of particular interest. The khipus were consequently sampled for elemental characterisation by micro-XRF, and liquid chromatography coupled with high-resolution mass spectrometry (HPLC–HRMS) for characterising the organic dye composition. This paper presents a part of the results of the project “Meaningful materials in the khipu code”, with the intent to shed light on the difficulties and possibilities of investigating khipu colours and dyestuffs. MBI and XRF revealed unforeseeable structural characteristics, such as remnants from a heavily degraded thread in an area of missing thread wrapping and a dual-coloured thread that was previously deemed single-coloured. The organic dyes identified by HPLC–HRMS comprised indigoids, cochineal, and an unknown flavonoid-based dyestuff. XRF of the inorganic components revealed associations of several elements with specific colours.Publisher PDFPeer reviewe

    Shedding light on the composition and degradation mechanism of dyes in historical ink's collection (19th-20th century)

    Get PDF
    Man has always used writing to be able to communicate, express, and disseminate his thoughts. In time, many different coloured extracts of plant and animal origin have been used to produce inks; after the development of synthetic chemistry, artificial and synthetic dyes started to be widely exploited. The end of the 19th century marked great technological and industrial innovations in commercial production of artists' materials. To reveal ink formulations and build a database of red inks by different producers, we developed a multi-analytical approach and investigated a collection of writing inks produced in France in the late 19th - early 20th century. The materials used as binders, additives, dyes, and pigments have been investigated by high performance liquid chromatography coupled with diode array and tandem mass spectrometric detectors (HPLC-DAD-MS2), in situ derivatisation pyrolysis coupled with gas chromatography-mass spectrometry (Py(HMDS)-GC/MS), surface enhanced Raman (SERS, TLC-SERS) and X-Ray Fluorescence spectroscopies. Several dyes and pigments were detected, showing that the French ink's formulations of the early days of synthetic dye industry were based on rhodamine B and 6G, eosin Y, rose Bengal and methyl or crystal violet. Instead, as binder and additives only gum Arabic and shellac resin have been identified, respectively. Mass spectrometry also allowed us to detect possible by-products of the synthesis of ink's dyes and even early degradation products, that can be used for ink identification in historical writings and drawings. Our studies can pave the way to investigate inks in historical samples by introducing ultra-sensitive chromatographic and mass spectrometric methods in the array of analytical tools available to the chemist

    Synthetic materials in art: a new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis

    Get PDF
    Abstract Modern art materials introduced since the end of XIX century include a large number of formulations of synthetic polymers and pigments, whose degradation processes and best preservation conditions are a major issue in heritage science. Analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS) is widely used for the characterisation of polymeric materials and organic pigments, however the interpretation of the pyrograms obtained from samples containing different analytes is not straightforward. To improve our understanding on how these materials behave in complex matrices, we used evolved gas analysis coupled with mass spectrometry (EGA-MS) and multi shot Py-GC/MS to highlight and analyse the different fractions in a sample from a pop-art made of painted polyurethane (PU) foam. The study represents a proof of concept to evaluate EGA-MS potential in studying composite modern art materials in combination with multi-shot pyrolysis. The aim of the investigation was establishing the composition of the PU formulation, the paint binder and the pigments, thereby contributing to planning the stabilisation and conservation of the object. The polymers and the class of synthetic organic pigments present in the paint were assessed by determining their specific pyrolysis products and through comparisons with data in the literature. EGA-MS analysis provided both thermal and chemical information in one analytical run, so that we could select four temperatures for use in multi-shot Py-GC/MS analysis and thus to selectively study the different fractions evolved at different temperatures. Information on the various components of the mixture was obtained, including additives and organic pigments, separating them on the basis of their different thermal degradation temperatures. The multianalytical approach included also non-destructive ATR-FTIR and enabled us to characterize in detail different synthetic materials: polyether-based polyurethane produced by the polyaddition of 2,6-diisocyanate toluene, hexamethylene diisocyanate and polypropylene glycol, vinyl paint, and a mixture of ÎČ-naphthol and mono-azo as pigments. HPLC–DAD and HPLC–ESI–MS analyses confirmed the pigments, and provided a positive identification of two ÎČ-naphthols (PO5 and PR1) and two monoazo pigments (PY1 and PY3)

    A Thermal Analytical Study of LEGOÂź Bricks for Investigating Light-Stability of ABS

    Get PDF
    Acrylonitrile butadiene styrene (ABS) is a thermoplastic polymer widely used in several everyday life applications; moreover, it is also one of the most employed plastics in contemporary artworks and design objects. In this study, the chemical and thermal properties of an ABS-based polymer and its photo-degradation process were investigated through a multi-analytical approach based on thermal, mass spectrometric and spectroscopic techniques. LEGO(& REG;) building blocks were selected for studying the ABS properties. First, the composition of unaged LEGO(& REG;) bricks was determined in terms of polymer composition and thermal stability; then, the bricks were subjected to UV-Vis photo-oxidative-accelerated ageing for evaluation of possible degradation processes. The modifications of the chemical and thermal properties were monitored in time by a multi-technique approach aimed at improving the current knowledge of ABS photodegradation, employing pyrolysis online with gas chromatography and evolved gas analysis, coupled with mass spectrometric detection (Py-GC-MS and EGA-MS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and corroborated by external reflection FT-IR spectroscopy. The multimodal approach provided new evidence on the two-step degradation pathway proposed for ABS, defining molecular markers for polybutadiene oxidation and styrene-acrylonitrile depolymerization. Moreover, the results highlighted the feasibility of correlating accurate compositional and thermal data acquired by bulk techniques with external reflection FT-IR spectroscopy as a non-invasive portable tool to monitor the state of conservation of plastic museum objects in-situ

    Tethering Carbohydrates to the Vinyliminium Ligand of Antiproliferative Organometallic Diiron Complexes

    Get PDF
    Four propargyl O-glycosides derivatized with mannose, glucose, and fructose moieties were synthesized and then incorporated within a diiron structure as part of a vinyliminium ligand. Hence, six glycoconjugated diiron complexes, [2−5]CF3SO3 (see Scheme 1) and the nonglycosylated analogues [6a−b]CF3SO3, were obtained in high yields and unambiguously characterized by elemental analysis, mass spectrometry, and IR and multinuclear NMR spectroscopies. All compounds exhibited a significant stability in DMSO-d6/D2O solution, with 63−89% of the complexes unaltered after 72 h at 37 °C and also in the cell culture medium. The cytotoxicity of [2−6]CF3SO3, as well as that of previously reported 7 and 8, was assessed on CT26 (mouse colon carcinoma), U87 (humanglioblastoma), MCF-7 human breast adenocarcinoma), and RPE-1 (human normal retina pigmented epithelium) cell lines. In general, the IC50 values correlate with the hydrophobicity of the compounds (measured as octanol−water partition coefficients) and do not show an appreciable level of selectivity against cancer cells with respect to the nontumor ones
    • 

    corecore