125 research outputs found

    Kebijakan Kelembagaan Usaha Unggas Tradisional sebagai SUmber Ekonomi Rumah Tangga Perdesaan: Kasus Peternakan Burung Puyuh Yogyakarta

    Get PDF
    Usaha pemberdayaan ekonomi masyarakat perdesaan melalui usaha peternakan skala rumah tangga yang dilakukan oleh komunitas peternak puyuh di DI Yogyakarta, merupakan salah satu contoh bagi aktivitas masyarakat yang dapat menggerakkan perekonomian perdesaan. Pengetahuan masyarakat dan pemerintah terhadap kegiatan usaha ternak ini masih terbatas, sehingga dianggap masih belum merupakan potensi usaha bagi percepatan pertumbuhan ekonomi maupun sumber pendapatan daerah. Padahal usaha ini telah memberikan peluang usaha rumah tangga yang potensial disamping sebagai salah satu sumber perekonomian masyarakat. Pola usaha ternak dilakukan baik secara mandiri maupun kemitraan dengan segala kelebihan dan kekurangan dari masing-masing pola tersebut. Partisipasi kelembagaan dari seluruh aspek, telah menjadikan usaha ternak puyuh berkembang menjadi sebuah alternatif kegiatan yang memberikan penghasilan sesuai dengan skala usaha yang  dilakukan. Dukungan pihak terkait juga sangat berperan dalam perkembangan usaha skala rumah tangga ini menjadi basis perekonomian masyarakat di perdesaan baik sebelum maupun sesudah terjadinya serangan wabah Avian Influensa (AI). Adanya serangan virus Avian Influensa (AI) tersebut kemudian menjadi salah satu penyebab utama yang mengakibatkan kerugian materi yang cukup besar dalam usaha ternak puyuh serta ternak unggas. Para peternak rakyat akhirnya banyak yang mengalami kegagalan usaha bahkan berhenti menjadi peternak puyuh. Peran serta semua pihak dalam usaha mendorong kembali usaha peternakan puyuh pasca serangan AI harus menjadi agenda utama agar kegiatan usaha peternakan rakyat kembali berproduksi sebagaimana kondisi sebelum terjadinya serangan virus Avian Influenza. Aspek dan bahasan tentang kelembagaaan yang terkait dengan usaha ternak puyuh diharapkan dapat menjadi dasar bagi penumbuhan kembali usaha peternakan rakyat sebagai basis perekonomian di perdesaan

    The importance of post-translocation monitoring of habitat use and population growth: insights from a Seychelles Warbler (Acrocephalus sechellensis) translocation

    Get PDF
    Translocations are a valuable tool within conservation, and when performed successfully can rescue species from extinction. However, to label a translocation a success, extensive post-translocation monitoring is required, ensuring the population is growing at the expected rate. In 2011, a habitat assessment identified Frégate Island as a suitable island to host a Seychelles Warbler (Acrocephalus sechellensis) population. Later that year, 59 birds were translocated from Cousin Island to Frégate Island. Here, we determine Seychelles Warbler habitat use and population growth on Frégate Island, assessing the status of the translocation and identifying any interventions that may be required. We found that territory quality, an important predictor of fledgling production on Cousin Island, was a poor predictor of bird presence on Frégate Island. Instead, tree diversity, middle-storey vegetation density, and broad-leafed vegetation density all predicted bird presence positively. A habitat suitability map based on these results suggests most of Frégate Island contains either a suitable or a moderately suitable habitat, with patches of unsuitable overgrown coconut plantation. To achieve the maximum potential Seychelles Warbler population size on Frégate Island, we recommend habitat regeneration, such that the highly diverse subset of broad-leafed trees and a dense middle storey should be protected and replace the unsuitable coconut. Frégate Island’s Seychelles Warbler population has grown to 141 birds since the release, the slowest growth rate of all Seychelles Warbler translocations; the cause of this is unclear. This study highlights the value of post-translocation monitoring, identifying habitat use and areas requiring restoration, and ultimately ensuring that the population is growing

    Intracellular Trafficking and Synaptic Function of APL-1 in Caenorhabditis elegans

    Get PDF
    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder primarily characterized by the deposition of b-amyloid plaques in the brain. Plaques are composed of the amyloid-b peptide derived from cleavage of the amyloid precursor protein (APP). Mutations in APP lead to the development of Familial Alzheimer’s Disease (FAD), however, the normal function of this protein has proven elusive. The organism Caenorhabditis elegans is an attractive model as the amyloid precursor-like protein (APL-1) is the single ortholog of APP, and loss of apl-1 leads to a severe molting defect and early larval lethality. Methodology/Principal Findings: We report here that lethality and molting can be rescued by full length APL-1, C-terminal mutations as well as a C-terminal truncation, suggesting that the extracellular region of the protein is essential for viability. RNAi knock-down of apl-1 followed by drug testing on the acetylcholinesterase inhibitor aldicarb showed that loss of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. The aldicarb hypersensitivity can be rescued by full length APL-1 in a dose dependent fashion. At the cellular level, kinesins UNC-104/KIF-1A and UNC-116/kinesin-1 are positive regulators of APL-1 expression in the neurons. Knock-down of the small GTPase rab-5 also leads to a dramatic decrease in the amount of apl-1 expression in neurons, suggesting that trafficking from the plasma membrane to the early endosome is important for apl-1 function. Loss of function of a different small GTPase, UNC-108, on the contrary, leads t

    Secreted Human Amyloid Precursor Protein Binds Semaphorin 3a and Prevents Semaphorin-Induced Growth Cone Collapse

    Get PDF
    The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα695 (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα695 binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα695 inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (Kd≤8·10−9 M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins

    Amyloid Precursor Protein Is Trafficked and Secreted via Synaptic Vesicles

    Get PDF
    A large body of evidence has implicated amyloid precursor protein (APP) and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD). Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
    • …
    corecore