100 research outputs found

    The CT20 peptide causes detachment and death of metastatic breast cancer cells by promoting mitochondrial aggregation and cytoskeletal disruption

    Get PDF
    Metastasis accounts for most deaths from breast cancer, driving the need for new therapeutics that can impede disease progression. Rationally designed peptides that take advantage of cancer-specific differences in cellular physiology are an emerging technology that offer promise as a treatment for metastatic breast cancer. We developed CT20p, a hydrophobic peptide based on the C terminus of Bax that exhibits similarities with antimicrobial peptides, and previously reported that CT20p has unique cytotoxic actions independent of full-length Bax. In this study, we identified the intracellular actions of CT20p which precede cancer cell-specific detachment and death. Previously, we found that CT20p migrated in the heavy membrane fractions of cancer cell lysates. Here, using MDA-MB-231 breast cancer cells, we demonstrated that CT20p localizes to the mitochondria, leading to fusion-like aggregation and mitochondrial membrane hyperpolarization. As a result, the distribution and movement of mitochondria in CT20p-treated MDA-MB-231 cells was markedly impaired, particularly in cell protrusions. In contrast, CT20p did not associate with the mitochondria of normal breast epithelial MCF-10A cells, causing little change in the mitochondrial membrane potential, morphology or localization. In MDA-MB-231 cells, CT20p triggered cell detachment that was preceded by decreased levels of alpha 5 beta 1 integrins and reduced F-actin polymerization. Using folate-targeted nanoparticles to encapsulate and deliver CT20p to murine tumors, we achieved significant tumor regression within days of peptide treatment. These results suggest that CT20p has application in the treatment of metastatic disease as a cancer-specific therapeutic peptide that perturbs mitochondrial morphology and movement ultimately culminating in disruption of the actin cytoskeleton, cell detachment, and loss of cell viability

    The relationships between perfectionism, pathological worry and generalised anxiety disorder

    Get PDF
    Background: The relationships between perfectionism, pathological worry and generalised anxiety disorder (GAD) were investigated in a clinical sample presenting for treatment of perfectionism. Method: This study explored the utility of perfectionism in predicting pathological worry in a sample of individuals with elevated perfectionism and GAD (n = 36). Following this, the study examined whether perfectionism could predict a principal GAD diagnosis in the full sample (n = 42).Results: Scores on the perfectionism dimensions Concern over Mistakes, Personal Standards, and Clinical Perfectionism significantly predicted pathological worry among participants with GAD after controlling for gender and depression. The perfectionism dimension Doubts about Actions significantly predicted whether individuals from the full sample received a principal diagnosis of GAD. Conclusions: These findings support certain dimensions of perfectionism having significant associations with pathological worry and GAD

    Neurite Outgrowth Mediated by Translation Elongation Factor eEF1A1: A Target for Antiplatelet Agent Cilostazol

    Get PDF
    Cilostazol, a type-3 phosphodiesterase (PDE3) inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3) receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), and the Ras/Raf/ERK/MAPK) significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth

    Body composition in young female eating-disorder patients with severe weight loss and controls: evidence from the four-component model and evaluation of DXA

    Get PDF
    BACKGROUND/OBJECTIVES: Whether fat-free mass (FFM) and its components are depleted in eating-disorder (ED) patients is uncertain. Dual energy X-ray absorptiometry (DXA) is widely used to assess body composition in pediatric ED patients; however, its accuracy in underweight populations remains unknown. We aimed (1) to assess body composition of young females with ED involving substantial weight loss, relative to healthy controls using the four-component (4C) model, and (2) to explore the validity of DXA body composition assessment in ED patients. SUBJECTS/METHODS: Body composition of 13 females with ED and 117 controls, aged 10-18 years, was investigated using the 4C model. Accuracy of DXA for estimation of FFM and fat mass (FM) was tested using the approach of Bland and Altman. RESULTS: Adjusting for age, height and pubertal stage, ED patients had significantly lower whole-body FM, FFM, protein mass (PM) and mineral mass (MM) compared with controls. Trunk and limb FM and limb lean soft tissue were significantly lower in ED patients. However, no significant difference in the hydration of FFM was detected. Compared with the 4C model, DXA overestimated FM by 5 +/- 36% and underestimated FFM by 1 +/- 9% in ED patients. CONCLUSION: Our study confirms that ED patients are depleted not only in FM but also in FFM, PM and MM. DXA has limitations for estimating body composition in individual young female ED patients

    Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder

    Get PDF
    Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain

    Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Pyrus </it>belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of <it>Pyrus </it>has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of <it>LEAFY </it>and the alcohol dehydrogenase gene (<it>Adh</it>) were selected to investigate their molecular evolution and phylogenetic utility.</p> <p>Results</p> <p>DNA sequence analyses revealed a complex ortholog and paralog structure of <it>Adh </it>genes in <it>Pyrus </it>and <it>Malus</it>, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some <it>Adh </it>homologs are putatively nonfunctional. A partial region of <it>Adh1 </it>was sequenced for 18 <it>Pyrus </it>species and three subparalogs representing <it>Adh1-1 </it>were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of <it>LEAFY</it>, multiple inparalogs were discovered for both <it>LFY1int2 </it>and <it>LFY2int2</it>. <it>LFY1int2 </it>is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. <it>LFY2int2-N</it>, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of <it>Pyrus </it>using <it>LFY2int2-N</it>.</p> <p>Conclusions</p> <p>Our study represents the first phylogenetic analyses based on LCNGs in <it>Pyrus</it>. Ancient and recent duplications lead to a complex structure of <it>Adh </it>outparalogs and inparalogs in <it>Pyrus </it>and <it>Malus</it>, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, <it>LFY2int2-N </it>is the best nuclear marker for phylogenetic reconstruction of <it>Pyrus </it>due to suitable sequence divergence and the absence of lineage sorting.</p

    Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?

    Get PDF
    Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007 program and IF Development Grant (AJS); and pre-doctoral fellowships to FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de Referência Estratégico Nacional (QREN), através do Fundo Europeu de Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio
    corecore