1,093 research outputs found
Spiral Magnets as Gapless Mott Insulators
In the large limit, the ground state of the half-filled, nearest-neighbor
Hubbard model on the triangular lattice is the three-sublattice
antiferromagnet. In sharp contrast with the square-lattice case, where
transverse spin-waves and charge excitations remain decoupled to all orders in
, it is shown that beyond leading order in the three Goldstone modes
on the triangular lattice are a linear combination of spin and charge. This
leads to non-vanishing conductivity at any finite frequency, even though the
magnet remains insulating at zero frequency. More generally, non-collinear spin
order should lead to such gapless insulating behavior.Comment: 10 pages, REVTEX 3.0, 3 uuencoded postscript figures, CRPS-94-0
Nine genes abundantly expressed in the epididymis are not essential for male fecundity in mice
Noda, T., Sakurai, N., Nozawa, K., Kobayashi, S., Devlin, D. J., Matzuk, M. M., & Ikawa, M. (2019). Nine genes abundantly expressed in the epididymis are not essential for male fecundity in mice. Andrology, 7(5), 644-653. doi:10.1111/andr.1262
Microbial methane formation in deep aquifers associated with the sediment burial history at a coastal site
Elucidating the mechanisms underlying microbial methane formation in subsurface environments is essential to understanding the global carbon cycle. This study examined how microbial methane formation (i.e., methanogenesis) occurs in natural-gas-bearing sedimentary aquifers throughout the sediment burial history. Water samples collected from six aquifers of different depths exhibited ascending vertical gradients in salinity from brine to fresh water and in temperature from mesophilic to psychrophilic conditions. Analyses of gas and water isotopic ratios and microbial communities indicated the predominance of methanogenesis via CO2 reduction. However, the hydrogen isotopic ratio of water changed along the depth and salinity gradient, whereas the ratio of methane changed little, suggesting that in situ methanogenesis in shallow sediments does not significantly contribute to methane in the aquifers. The population of methane-producing microorganisms (methanogens) was highest in the deepest saline aquifers, where the water temperature, salinity, and total organic carbon content of the adjacent mud sediments were the highest. Cultivation of the dominant hydrogenotrophic methanogens in the aquifers showed that the methanogenesis rate was maximized at the temperature corresponding to that of the deepest aquifer. These results suggest that high-temperature conditions in deeply buried sediments are associated with enhanced in situ methanogenesis and that methane that forms in the deepest aquifer migrates upward into the shallower aquifers by diffusion.</p
Variational formulas of higher order mean curvatures
In this paper, we establish the first variational formula and its
Euler-Lagrange equation for the total -th mean curvature functional
of a submanifold in a general Riemannian manifold
for . As an example, we prove that closed
complex submanifolds in complex projective spaces are critical points of the
functional , called relatively -minimal submanifolds,
for all . At last, we discuss the relations between relatively -minimal
submanifolds and austere submanifolds in real space forms, as well as a special
variational problem.Comment: 13 pages, to appear in SCIENCE CHINA Mathematics 201
Notch signaling during human T cell development
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse
Synthesis and characterisation of pyrene-labelled polydimethylsiloxane networks: towards the in situ detection of strain in silicone elastomers
Pyrene-substituted polyhydromethylsiloxanes (PHMS-Py-x) were synthesised by the hydrosilylation reaction of prop-3-enyloxymethylpyrene with polyhydromethylsiloxane (M-n = 3700). The ratio of pyrene substituent to Si-H unit was varied to afford a range of pyrene-functionalised polysiloxanes. These copolymers were subsequently incorporated into polydimethylsiloxane (PDMS) elastomers by curing via either Pt(0) catalysed hydrosilylation with divinyl-terminated PDMS (M-n = 186) and tetrakis(dimethylsiloxy) silane, or Sn(II) catalysed condensation with alpha,omega-dihydroxyPDMS (M-n = 26 000) and tetraethoxysilane. An alternative method involving the synthesis and integration of [3-(pyren-1-ylmethoxy)propyl]triethoxysilane (Py-TEOS) into PDMS elastomers was also investigated: a mixture of alpha,omega-dihydroxyPDMS (M-n = 26 000), tetraethoxysilane, and Py-TEOS was cured using an Sn( II) catalyst. Certain of the resulting fluorescent pyrene-labelled elastomers were studied by differential scanning calorimetry and dynamic mechanical analysis. No significant changes were observed in the thermal or mechanical properties of the elastomers containing pyrene when compared to otherwise identical samples not containing pyrene. All of the pyrene-containing elastomers were demonstrated to be fluorescent under suitable excitation in a photoluminescent spectrometer. Two of the elastomers were placed in a photoluminescence spectrometer and subjected to cycles of extension and relaxation (strain = 0-16.7%) while changes in the emission spectra were monitored. The resulting spectra of the elastomer containing the PHMS-Py-50 copolymers were variable and inconsistent. However, the emission peaks of elastomers containing Py-TEOS displayed clear and reproducible changes in fluorescence intensity upon stretching and relaxation. The intensity of the monomer and excimer emission peaks was observed to increase with elongation of the sample and decrease upon relaxation. Furthermore, the ratio of the intensities of the excimer : monomer peak decreased with elongation and increased with relaxation. In neither case was there appreciable hysteresis, suggesting that fluorescent labelling of elastomers is a valid approach for the non-invasive in situ monitoring of stress and strain in such materials
Competition between spin and charge polarized states in nanographene ribbons with zigzag edges
Effects of the nearest neighbor Coulomb interaction on nanographene ribbons
with zigzag edges are investigated using the extended Hubbard model within the
unrestricted Hartree-Fock approximation. The nearest Coulomb interaction
stabilizes a novel electronic state with the opposite electric charges
separated and localized along both edges, resulting in a finite electric dipole
moment pointing from one edge to the other. This charge-polarized state
competes with the peculiar spin-polarized state caused by the on-site Coulomb
interaction and is stabilized by an external electric field.Comment: 4 pages; 4 figures; accepted for publication in Phys. Rev. B; related
Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm
- …