12,293 research outputs found

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x⃗)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x⃗\vec{x}. Let μ∈[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x⃗)y_i(\vec{x}), and Un,k,Vn,k⊆{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k−1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5≤k(n)≤n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ≤1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio

    Hitchhiking Through the Cytoplasm

    Get PDF
    We propose an alternative mechanism for intracellular cargo transport which results from motor induced longitudinal fluctuations of cytoskeletal microtubules (MT). The longitudinal fluctuations combined with transient cargo binding to the MTs lead to long range transport even for cargos and vesicles having no molecular motors on them. The proposed transport mechanism, which we call ``hitchhiking'', provides a consistent explanation for the broadly observed yet still mysterious phenomenon of bidirectional transport along MTs. We show that cells exploiting the hitchhiking mechanism can effectively up- and down-regulate the transport of different vesicles by tuning their binding kinetics to characteristic MT oscillation frequencies

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k≥1k \geq 1 it is consistent with theory TT that computational class C⊈i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Beyond basis invariants

    Full text link
    Physical observables cannot depend on the basis one chooses to describe fields. Therefore, all physically relevant properties of a model are, in principle, expressible in terms of basis-invariant combinations of the parameters. However, in many cases it becomes prohibitively difficult to establish key physical features exclusively in terms of basis invariants. Here, we advocate an alternative route in such cases: the formulation of basis-invariant statements in terms of basis-covariant objects. We give several examples where the basis-covariant path is superior to the traditional approach in terms of basis invariants. In particular, this includes the formulation of necessary and sufficient basis-invariant conditions for various physically distinct forms of CP conservation in two- and three-Higgs-doublet models.Comment: 20 pages, no figure
    • …
    corecore