9 research outputs found

    MOESM1 of chemalot and chemalot_knime: Command line programs as workflow tools for drug discovery

    No full text
    Additional file 1. Contains a screenshot of the KNIME workflow corresponding to the example command line pipe shown in Fig. 9 and a list with brief description of each command line program

    Leveraging the Pre-DFG Residue Thr-406 To Obtain High Kinase Selectivity in an Aminopyrazole-Type PAK1 Inhibitor Series

    No full text
    To increase kinase selectivity in an aminopyrazole-based PAK1 inhibitor series, analogues were designed to interact with the PAK1 deep-front pocket pre-DFG residue Thr-406, a residue that is hydrophobic in most kinases. This goal was achieved by installing lactam head groups to the aminopyrazole hinge binding moiety. The corresponding analogues represent the most kinase selective ATP-competitive Group I PAK inhibitors described to date. Hydrogen bonding with the Thr-406 side chain was demonstrated by X-ray crystallography, and inhibitory activities, particularly against kinases with hydrophobic pre-DFG residues, were mitigated. Leveraging hydrogen bonding side chain interactions with polar pre-DFG residues is unprecedented, and similar strategies should be applicable to other appropriate kinases

    Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors

    No full text
    The p21-activated kinases (PAKs) play important roles in cytoskeletal organization, cellular morphogenesis, and survival and have generated significant attention as potential therapeutic targets for cancer. Following a high-throughput screen, we identified an aminopyrazole scaffold-based series that was optimized to yield group I selective PAK inhibitors. A structure-based design effort aimed at targeting the ribose pocket for both potency and selectivity led to much-improved group I vs II selectivity. Early lead compounds contained a basic primary amine, which was found to be a major metabolic soft spot with in vivo clearance proceeding predominantly via <i>N</i>-acetylation. We succeeded in identifying replacements with improved metabolic stability, leading to compounds with lower in vivo rodent clearance and excellent group I PAK selectivity

    Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window

    No full text
    p21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido­[2,3-<i>d</i>]­pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analogue G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of minimum toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery

    Design of Selective PAK1 Inhibitor G‑5555: Improving Properties by Employing an Unorthodox Low‑p<i>K</i><sub>a</sub> Polar Moiety

    No full text
    Signaling pathways intersecting with the p21-activated kinases (PAKs) play important roles in tumorigenesis and cancer progression. By recognizing that the limitations of FRAX1036 (<b>1</b>) were chiefly associated with the highly basic amine it contained, we devised a mitigation strategy to address several issues such as hERG activity. The 5-amino-1,3-dioxanyl moiety was identified as an effective means of reducing p<i>K</i><sub>a</sub> and logP simultaneously. When positioned properly within the scaffold, this group conferred several benefits including potency, pharmacokinetics, and selectivity. Mouse xenograft PK/PD studies were carried out using an advanced compound, G-5555 (<b>12</b>), derived from this approach. These studies concluded that dose-dependent pathway modulation was achievable and paves the way for further in vivo investigations of PAK1 function in cancer and other diseases

    Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window

    No full text
    p21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido­[2,3-<i>d</i>]­pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analogue G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of minimum toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery

    Identification of <i>C</i>‑2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2

    No full text
    Herein we report on the structure-based discovery of a <i>C</i>-2 hydroxyethyl moiety which provided consistently high levels of selectivity for JAK1 over JAK2 to the imidazopyrrolopyridine series of JAK1 inhibitors. X-ray structures of a <i>C</i>-2 hydroxyethyl analogue in complex with both JAK1 and JAK2 revealed differential ligand/protein interactions between the two isoforms and offered an explanation for the observed selectivity. Analysis of historical data from related molecules was used to develop a set of physicochemical compound design parameters to impart desirable properties such as acceptable membrane permeability, potent whole blood activity, and a high degree of metabolic stability. This work culminated in the identification of a highly JAK1 selective compound (<b>31</b>) exhibiting favorable oral bioavailability across a range of preclinical species and robust efficacy in a rat CIA model
    corecore