2 research outputs found
Recommended from our members
Seed size and its rate of evolution correlate with species diversification across angiosperms
Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one trait that may help clarify why some lineages diversify more than others because it confers adaptation to different environments, which can subsequently influence speciation and extinction. The rate at which seed mass changes across the angiosperm phylogeny may also be linked to diversification by increasing reproductive isolation and allowing access to novel ecological niches. However, the magnitude and direction of the association between seed mass and diversification has not been assessed across the angiosperm phylogeny. Here, we show that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on the largest available angiosperm phylogenetic tree, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, providing rare, large-scale evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits and, importantly, the rate at which they evolve can contribute to explaining the extremely uneven distribution of diversity across the ToL.Gatsby Charitable Trust
Wellcome Trust
Sir Isaac Newton Trust
BBSRC DTP grant to EF Miller (BB/M011194/1
Evidence of positive selection associated with placental loss in tiger sharks
Background: All vertebrates initially feed their offspring using yolk reserves. In some live-bearing species these yolk
reserves may be supplemented with extra nutrition via a placenta. Sharks belonging to the Carcharhinidae family
are all live-bearing, and with the exception of the tiger shark (Galeocerdo cuvier), develop placental connections
after exhausting yolk reserves. Phylogenetic relationships suggest the lack of placenta in tiger sharks is due to
secondary loss. This represents a dramatic shift in reproductive strategy, and is likely to have left a molecular
footprint of positive selection within the genome.
Results: We sequenced the transcriptome of the tiger shark and eight other live-bearing shark species. From this
data we constructed a time-calibrated phylogenetic tree estimating the tiger shark lineage diverged from the
placental carcharhinids approximately 94 million years ago. Along the tiger shark lineage, we identified five genes
exhibiting a signature of positive selection. Four of these genes have functions likely associated with brain
development (YWHAE and ARL6IP5) and sexual reproduction (VAMP4 and TCTEX1D2).
Conclusions: Our results indicate the loss of placenta in tiger sharks may be associated with subsequent adaptive
changes in brain development and sperm production