19 research outputs found

    PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases : A biophysical and nanotoxicological characterization

    Get PDF
    Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine.Instituto Multidisciplinario de Biología Celula

    PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases : A biophysical and nanotoxicological characterization

    Get PDF
    Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine.Instituto Multidisciplinario de Biología Celula

    Lipid-polymer membranes as carriers for L-tryptophan : Molecular and metabolic properties

    Get PDF
    Polymerized liposomes encapsulating L-tryptophan were studied with the aim to characterize them as drug delivery systems for the treatment of several metabolic diseases that need an increased systemic L-tryptophan concentration, polymerized liposomes were obtained by UV irradiation of vesicles containing 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in a 1:1 molar ratio, in the presence of 10 and 50 mol% of L-tryptophan (respect to total lipid concentration). Polymerization efficiency was studied spectrophotometrically. Also, bilayer packing at the polar head region was followed with the Merocyanine 540 (MC540) and specific interactions in the lipopolymers were studied by FTIR. High L-tryptophan concentrations (50 mol% respect to total lipid concentration) induced a higher amount of six- and nine-unit polymers. This phenomenon was induced because the L-tryptophan located outside the lipid membrane was included in it during the polymerization process and was thus responsible for the better accommodate of the polar head region. This was not possible with the lower amount of L-tryptophan (10 mol%). The stability of lipopolymers with different amounts of L-tryptophan was studied through release profiles. Polymerized liposomes with 50 mol% of L-tryptophan were able to retain around 80% of the amino acid after 24 hours, whereas those with 10 mol % of the amino acid were able to retain 20%. The metabolic activity of the Caco-2 cell line was also studied. Cytotoxic effects were low in the presence of polymerized liposomes, rendering a maximum percentage of cell death of 30%. In summary, this work stresses the relevance of nonspecific drug-polymerized membrane binding on L-tryptophan pharmacological interaction with possible pharmaceutical applications in liposomal drug delivery. Moreover, the absence of significant cytotoxic effects allows the system proposed to be applied in human health.Instituto Multidisciplinario de Biología Celula

    Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA

    Get PDF
    Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel nonviral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.Instituto Multidisciplinario de Biología Celula

    Lipid-polymer membranes as carriers for L-tryptophan : Molecular and metabolic properties

    Get PDF
    Polymerized liposomes encapsulating L-tryptophan were studied with the aim to characterize them as drug delivery systems for the treatment of several metabolic diseases that need an increased systemic L-tryptophan concentration, polymerized liposomes were obtained by UV irradiation of vesicles containing 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in a 1:1 molar ratio, in the presence of 10 and 50 mol% of L-tryptophan (respect to total lipid concentration). Polymerization efficiency was studied spectrophotometrically. Also, bilayer packing at the polar head region was followed with the Merocyanine 540 (MC540) and specific interactions in the lipopolymers were studied by FTIR. High L-tryptophan concentrations (50 mol% respect to total lipid concentration) induced a higher amount of six- and nine-unit polymers. This phenomenon was induced because the L-tryptophan located outside the lipid membrane was included in it during the polymerization process and was thus responsible for the better accommodate of the polar head region. This was not possible with the lower amount of L-tryptophan (10 mol%). The stability of lipopolymers with different amounts of L-tryptophan was studied through release profiles. Polymerized liposomes with 50 mol% of L-tryptophan were able to retain around 80% of the amino acid after 24 hours, whereas those with 10 mol % of the amino acid were able to retain 20%. The metabolic activity of the Caco-2 cell line was also studied. Cytotoxic effects were low in the presence of polymerized liposomes, rendering a maximum percentage of cell death of 30%. In summary, this work stresses the relevance of nonspecific drug-polymerized membrane binding on L-tryptophan pharmacological interaction with possible pharmaceutical applications in liposomal drug delivery. Moreover, the absence of significant cytotoxic effects allows the system proposed to be applied in human health.Instituto Multidisciplinario de Biología Celula

    Combined Therapy for Alzheimer’s Disease : Tacrine and PAMAM Dendrimers Co-Administration Reduces the Side Effects of the Drug without Modifying its Activity

    Get PDF
    Alzheimer’s disease has become a public health priority, so an investigation of new therapies is required. Tacrine (TAC) was licensed for treatments; however, its oral administration caused hepatotoxicity, so it is essential to reduce the side effects. PAMAM dendrimer generation 4.0 and 4.5 (DG4.0 and DG4.5) can be used as drug delivery systems and as nanodrugs per se. Our work aims to propose a combined therapy based on TAC and PAMAM dendrimer co-administration. TAC and dendrimer interactions were studied by in vitro drug release, drug stability, and FTIR. The toxicity profile of co-administration was evaluated in human red blood cells, in Neuro-2a cell culture, and in zebrafish larvae. Also, the anti-acetylcholinesterase activity was studied in cell culture. It was possible to obtain DG4.0-TAC and DG4.5-TAC suspensions, without reducing the drug solubility and stability. FTIR and in vitro release studies confirmed that interaction between TAC and DG4.5 was of the electrostatic type. No toxicity effects on human red blood cells were observed, whereas the co-administration with DG4.5 reduced cytotoxicity of TAC on the Neuro-2a cell line. Moreover, in vivo co-administration of both DG4.0-TAC and DG4.5-TAC reduced the morphological and hepatotoxic effects of TAC in zebrafish larvae. The reduction of TAC toxicity was not accompanied by a reduction in its activity since the anti-acetylcholinesterase activity remains when it is co-administrated with dendrimers. In conclusion, the co-administration of TAC with both DG4.0 and DG4.5 is a novel therapy since it was less-toxic, was more biocompatible, and has the same effectiveness than the free drug.Instituto Multidisciplinario de Biología Celula

    Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA

    Get PDF
    Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel nonviral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.Instituto Multidisciplinario de Biología Celula

    Espacio de acompañamiento para asignaturas bimodales del departamento de ciencia y tecnología de la Universidad Nacional de Quilmes: una experiencia de implementación de la bimodalidad en carreras científico-tecnológicas

    Get PDF
    En este trabajo, se describirá la propuesta de implementación de asignaturas bimodales en el Departamento de Ciencia y Tecnología de la Universidad Nacional de Quilmes, y la creación de un Espacio de Acompañamiento para los docentes involucrados en el dictado de sus materias en esta modalidad. En este sentido, se analizarán algunas dimensiones relacionadas con la configuración de este espacio institucional, la articulación de la labor de diversas unidades académicas en el afianzamiento de la bimodalidad en este Departamento, los lineamientos básicos para la formación de los docentes, el diseño y la conducción de la enseñanza y el aprendizaje en entornos virtuales de aprendizaje, haciendo hincapié en el uso de cronogramas extendidos y planes de trabajo, el formato de las actividades de enseñanza y aprendizaje desarrolladas vía campus, los instrumentos de evaluación y la articulación entre teoría y práctica. Asimismo, se abordará la visión de los estudiantes en la implementación de la bimodalidad en el Departamento.Facultad de Humanidades y Ciencias de la Educació

    Espacio de acompañamiento para asignaturas bimodales del departamento de ciencia y tecnología de la Universidad Nacional de Quilmes: una experiencia de implementación de la bimodalidad en carreras científico-tecnológicas

    Get PDF
    En este trabajo, se describirá la propuesta de implementación de asignaturas bimodales en el Departamento de Ciencia y Tecnología de la Universidad Nacional de Quilmes, y la creación de un Espacio de Acompañamiento para los docentes involucrados en el dictado de sus materias en esta modalidad. En este sentido, se analizarán algunas dimensiones relacionadas con la configuración de este espacio institucional, la articulación de la labor de diversas unidades académicas en el afianzamiento de la bimodalidad en este Departamento, los lineamientos básicos para la formación de los docentes, el diseño y la conducción de la enseñanza y el aprendizaje en entornos virtuales de aprendizaje, haciendo hincapié en el uso de cronogramas extendidos y planes de trabajo, el formato de las actividades de enseñanza y aprendizaje desarrolladas vía campus, los instrumentos de evaluación y la articulación entre teoría y práctica. Asimismo, se abordará la visión de los estudiantes en la implementación de la bimodalidad en el Departamento.Facultad de Humanidades y Ciencias de la Educació

    Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA

    Get PDF
    Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel nonviral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.Instituto Multidisciplinario de Biología Celula
    corecore