191 research outputs found

    Fabrication of Chitin Nanofiber-Reinforced PLA Nanocomposites by an Environmentally Friendly Process

    Get PDF
    Polylactic acid (PLA) reinforced with chitin nanofibers was produced from a mixture of a colloidal suspension of PLA particles with chitin nanofiber suspension. The dispersion medium was solely water, which was removed by filtration and drying. Nanocomposites were obtained by compression molding of the filtrates. Static tensile test and dynamic mechanical analysis were performed to evaluate the reinforcement as a function of nanofiber content. Chitin nanofibers delivered reinforcement similar to cellulose nanofibers, being especially effective at up to 70 wt% fiber load. The ultimate tensile modulus and strength reached 7.7 GPa and 110 MPa, respectively, at a nanofiber content of 70 wt%

    The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b(559) in photosystem II

    Get PDF
    This work was supported in part by JST PRESTO (K.I.), by JSPS KAKENHI (grant no. 26660087 to K.I.; 26840091 to R.N.; 24000018 and 25291033 to T.No.), and MEXT KAKENHI (grant no. 24107003 to T.No.). The JST CREST also contributed to this work (part to J.N.). T.Ni. is supported as a JSPS research fellow (grant no. 15J08254)

    Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger

    Get PDF
    Bradykinin (BK) is produced and acts at the site of injury and inflammation. In the CNS, migration of microglia toward the lesion site plays an important role pathologically. In the present study, we investigated the effect of BK on microglial migration. Increased motility of cultured microglia was mimicked by B1 receptor agonists and markedly inhibited by a B1 antagonist but not by a B2 receptor antagonist. BK induced chemotaxis in microglia isolated from wild-type and B2-knock-out mice but not from B1-knock-out mice. BK-induced motility was not blocked by pertussis toxin but was blocked by chelating intracellular Ca2+ or by low extracellular Ca2+, implying that Ca2+ influx is prerequisite. Blocking the reverse mode of Na+/Ca2+ exchanger (NCX) completely inhibited BK-induced migration. The involvement of NCX was further confirmed by using NCX+/- mice; B1-agonist-induced motility and chemotaxis was decreased compared with that in NCX+/+ mice. Activation of NCX seemed to be dependent on protein kinase C and phosphoinositide 3-kinase, and resultant activation of intermediate-conductance (IK-type) Ca2+-dependent K+ currents (I(K(Ca))) was activated. Despite these effects, BK did not activate microglia, as judged from OX6 staining. Using in vivo lesion models and pharmacological injection to the brain, it was shown that microglial accumulation around the lesion was also dependent on B1 receptors and I(K(Ca)). These observations support the view that BK functions as a chemoattractant by using the distinct signal pathways in the brain and, thus, attracts microglia to the lesion site in vivo

    Stimulation of Na<sup>+</sup>/H<sup>+</sup> Exchanger Isoform 1 Promotes Microglial Migration

    Get PDF
    Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. © 2013 Shi et al

    One-step isolation and biochemical characterization of a highlyactive plant PSII monomeric core

    Get PDF
    We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009)

    Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films

    Get PDF
    In this work, we present new results on the plasma processing and structure of hydrogenated polymorphous silicon (pm-Si:H) thin films. pm-Si:H thin films consist of a low volume fraction of silicon nanocrystals embedded in a silicon matrix with medium range order, and they possess this morphology as a significant contribution to their growth comes from the impact on the substrate of silicon clusters and nanocrystals synthesized in the plasma. Quadrupole mass spectrometry, ion flux measurements, and material characterization by transmission electron microscopy (TEM) and atomic force microscopy all provide insight on the contribution to the growth by silicon nanocrystals during PECVD deposition. In particular, cross-section TEM measurements show for the first time that the silicon nanocrystals are uniformly distributed across the thickness of the pm-Si:H film. Moreover, parametric studies indicate that the best pm-Si:H material is obtained at the conditions after the transition between a pristine plasma and one containing nanocrystals, namely a total gas pressure around 2 Torr and a silane to hydrogen ratio between 0.05 to 0.1. From a practical point of view these conditions also correspond to the highest deposition rate achievable for a given RF power and silane flow rate.ope

    1000 spider silkomes: linking sequences to silk physical properties

    Get PDF
    Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs
    corecore