7 research outputs found

    Evaluation of Poly(vinyl alcohol)–Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery

    Get PDF
    In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress

    A Theoretical Multifractal Model for Assessing Urea Release from Chitosan Based Formulations

    No full text
    This paper reports the calibration of a theoretical multifractal model based on empirical data on the urea release from a series of soil conditioner systems. To do this, a series of formulations was prepared by in situ hydrogelation of chitosan with salicylaldehyde in the presence of different urea amounts. The formulations were morphologically characterized by scanning electron microscopy and polarized light microscopy. The in vitro urea release was investigated in an environmentally simulated medium. The release data were fitted on five different mathematical models, Korsmeyer–Peppas, Zero order, First order, Higuchi and Hixson–Crowell, which allowed the establishment of a mechanism of urea release. Furthermore, a multifractal model, used for the fertilizer release for the first time, was calibrated using these empirical data. The resulting fit was in good agreement with the experimental data, validating the multifractal theoretical model

    Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite<sup>®</sup> RD: Effect of Clay Concentration

    No full text
    In the context of increasing interest in biomaterials with applicability in cosmetics and medicine, this research aims to obtain and characterize some hybrid materials based on chitosan (CS) (antibacterial, biocompatible, and biodegradable), poly(ethylene glycol) (PEG) (non-toxic and prevents the adsorption of protein and cell) and Laponite® RD (Lap) (bioactive). The rheological properties of the starting dispersions were investigated and discussed related to the interactions developed between components. All samples exhibited gel-like properties, and the storage modulus of CS/PEG dispersion increased from 6.6 Pa to 657.7 Pa by adding 2.5% Lap. Structural and morphological characterization of the films, prepared by solution casting method, was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and polarized light microscopy (POM). These analyses proved the incorporation of Lap into CS/PEG films and revealed the morphological changes of the films by the addition of clay. Thereby, at the highest Lap concentration (43.8%), the “house of cards” structure formed by Lap platelets, which incorporate chitosan chains, as evidenced by SEM and POM. Two stages of degradation between 200 °C and 410 °C were evidenced for the films with Lap concentration higher than 38.5%, explained by the existence of a clay-rich phase (given by the clay network) and chitosan-rich one (due to the intercalation of chitosan in the clay network). CS/PEG film with 43.8% Lap showed the highest swelling degree of 240.7%. The analysis of the obtained results led to the conclusion that the addition of clay to the CS/PEG films increases their stability in water and gives them greater thermal stability

    A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations

    No full text
    The paper reports a new mathematical model for understanding the mechanism delivery from drug release systems. To do this, two drug release systems based on chitosan and diclofenac sodium salt as a drug model, were prepared by in situ hydrogelation in the presence of salicylaldehyde. The morphology of the systems was analyzed by scanning electron microscopy and polarized light microscopy and the drug release was in vitro investigated into a medium mimicking the in vivo environment. The drug release mechanism was firstly assessed by fitting the in vitro release data on five traditional mathematical model. In the context of pharmacokinetics behavioral analysis, a new mathematical procedure for describing drug release dynamics in polymer-drug complex systems was proposed. Assuming that the dynamics of polymer-drug system’s structural units take place on continuous and nondifferentiable curves (multifractal curves), it was showed that in a one-dimensional hydrodynamic formalism of multifractal variables the drug release mechanism is given through synchronous dynamics at a differentiable and non-differentiable scale resolutions
    corecore