29 research outputs found

    Therapeutic benefits of proning to improve pulmonary gas exchange in severe respiratory failure: Focus on fundamentals of physiology

    Get PDF
    NEW FINDINGS: What is the topic of this review? The use of proning for improving pulmonary gas exchange in critically ill patients. What advances does it highlight? Proning places the lung in its ‘natural’ posture, and thus optimises the ventilation‐perfusion distribution, which enables lung protective ventilation and the alleviation of potentially life‐threatening hypoxaemia in COVID‐19 and other types of critical illness with respiratory failure. ABSTRACT: The survival benefit of proning patients with acute respiratory distress syndrome (ARDS) is well established and has recently been found to improve pulmonary gas exchange in patients with COVID‐19‐associated ARDS (CARDS). This review outlines the physiological implications of transitioning from supine to prone on alveolar ventilation‐perfusion ([Formula: see text]) relationships during spontaneous breathing and during general anaesthesia in the healthy state, as well as during invasive mechanical ventilation in patients with ARDS and CARDS. Spontaneously breathing, awake healthy individuals maintain a small vertical (ventral‐to‐dorsal) [Formula: see text] ratio gradient in the supine position, which is largely neutralised in the prone position, mainly through redistribution of perfusion. In anaesthetised and mechanically ventilated healthy individuals, a vertical [Formula: see text] ratio gradient is present in both postures, but with better [Formula: see text] matching in the prone position. In ARDS and CARDS, the vertical [Formula: see text] ratio gradient in the supine position becomes larger, with intrapulmonary shunting in gravitationally dependent lung regions due to compression atelectasis of the dorsal lung. This is counteracted by proning, mainly through a more homogeneous distribution of ventilation combined with a largely unaffected high perfusion dorsally, and a consequent substantial improvement in arterial oxygenation. The data regarding proning as a therapy in patients with CARDS is still limited and whether the associated improvement in arterial oxygenation translates to a survival benefit remains unknown. Proning is nonetheless an attractive and lung protective manoeuvre with the potential benefit of improving life‐threatening hypoxaemia in patients with ARDS and CARDS

    Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD:a pilot study

    Get PDF
    INTRODUCTION: Exercise is an important countermeasure to limb muscle dysfunction in COPD. The two major training modalities in COPD rehabilitation, endurance training (ET) and resistance training (RT), may both be efficient in improving muscle strength, exercise capacity, and health-related quality of life, but the effects on quadriceps muscle characteristics have not been thoroughly described. METHODS: Thirty COPD patients (forced expiratory volume in 1 second: 56% of predicted, standard deviation [SD] 14) were randomized to 8 weeks of ET or RT. Vastus lateralis muscle biopsies were obtained before and after the training intervention to assess muscle morphology and metabolic and angiogenic factors. Symptom burden, exercise capacity (6-minute walking and cycle ergometer tests), and vascular function were also assessed. RESULTS: Both training modalities improved symptom burden and exercise capacity with no difference between the two groups. The mean (SD) proportion of glycolytic type IIa muscle fibers was reduced after ET (from 48% [SD 11] to 42% [SD 10], P<0.05), whereas there was no significant change in muscle fiber distribution with RT. There was no effect of either training modality on muscle capillarization, angiogenic factors, or vascular function. After ET the muscle protein content of phosphofructokinase was reduced (P<0.05) and the citrate synthase content tended increase (P=0.08) but no change was observed after RT. CONCLUSION: Although both ET and RT improve symptoms and exercise capacity, ET induces a more oxidative quadriceps muscle phenotype, counteracting muscle dysfunction in COPD

    Effectiveness of pulmonary rehabilitation in COPD with mild symptoms:a systematic review with meta-analyses

    No full text
    PURPOSE: Most guidelines recommend pulmonary rehabilitation (PR) for patients with chronic obstructive pulmonary disease (COPD) and modified Medical Research Council dyspnea scale (mMRC) levels ≥2, but the effectiveness of PR in patients with less advanced disease is not well established. Our aim was to investigate the effects of PR in patients with COPD and mMRC ≤1. METHODS: The methodology was developed as a part of evidence-based guideline development and is in accordance with the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group. We identified randomized controlled trials (RCTs) through a systematic, multidatabase literature search and selected RCTs comparing the effects of PR with usual care in patients with COPD and mMRC ≤1. Predefined critical outcomes were health-related quality of life (HRQoL), adverse effects and mortality, while walking distance, maximal exercise capacity, muscle strength, and dropouts were important outcomes. Two authors independently extracted data, assessed trial eligibility and risk of bias, and graded the evidence. Meta-analyses were performed when deemed feasible. RESULTS: Four RCTs (489 participants) were included. On the basis of moderate-quality evidence, we found a clinically and statistically significant improvement in short-term HRQoL of 4.2 units (95% confidence interval [CI]: [−4.51 to −3.89]) on St George’s Respiratory Questionnaire, but not at the longest follow-up. We also found a statistically significant improvement of 25.71 m (95% CI: [15.76–35.65]) in the 6-minute walk test with PR; however, this improvement was not considered clinically relevant. No difference was found for mortality, and insufficient data prohibited meta-analysis for muscle strength and maximal exercise capacity. No adverse effects were reported. CONCLUSION: We found a moderate quality of evidence suggesting a small, significant improvement in short-term HRQoL and a clinically nonsignificant improvement in walking distance following PR in patients with COPD and mild symptoms. This resulted in a weak recommendation of routine PR in these patients using the GRADE approach

    A combination of resistance and endurance training increases leg muscle strength in COPD:An evidence-based recommendation based on systematic review with meta-analyses

    No full text
    Resistance training (RT) is thought to be effective in preventing muscle depletion, whereas endurance training (ET) is known to improve exercise capacity and health-related quality of life (HRQoL) in chronic obstructive pulmonary disease (COPD). Our objectives were to assess the efficiency of combining RT with ET compared with ET alone. We identified eligible studies through a systematic multi-database search. One author checked titles and abstracts for relevance using broad inclusion criteria, whilst two independent authors checked the full-text copies for eligibility. Two authors independently extracted data, and we assessed the risk of bias and quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation guidelines. We included 11 randomized controlled trials (331 participants) and 2 previous systematic reviews. The meta-analyses showed equal improvements in HRQoL, walking distance and exercise capacity. However, we found moderate quality evidence of a significant increase in leg muscle strength favouring a combination of RT and ET (standardized mean difference of 0.69 (95% confidence interval: 0.39–0.98). In conclusion, we found significantly increased leg muscle strength favouring a combination of RT with ET compared with ET alone. Therefore, we recommend that RT should be incorporated in rehabilitation of COPD together with ET
    corecore