315 research outputs found

    Assessment of the effect of dihydroartemisinin-sodium valproate combination on some behavioural activities in mice

    Get PDF
    Co-morbidity inevitably warrant occurrence of polypharmacy that may result in interactions or modification of either the therapeutic or toxic effect of any of the drugs employed. Malaria and epilepsy have been known to occur concurrently as such may necessitate the co-administration of two or more drugs. This study evaluated the effect of dihydroartemisinin-valproate combination on some behavioral activities related to central nervous system. The study was conducted using animal models as follows: maximal electroshock-induced seizures test in mice, diazepam-induced sleep in mice and mouse beam walking test for motor coordination deficit. Generally, the results showed that there were no statistical significant effects in the test models. Therefore, dihydroartemisinin did not significantly influence the protective effect of sodium valproate in convulsion; and did not significantly cause sedation in animals. Hence, the result of this study suggests that dihydroartemisinin-sodium valproate combination could be considered safe in seizures condition.Keywords: Dihydroartemisinin, Polypharmacy, Valproate, Drugs, Epileps

    The Impact of Gate-Induced Drain Leakage (GIDL) on Scaled MOSFETs for Low Power Device

    Get PDF
    In this research, we investigated the impact of Gate-Induced Drain Leakage (GIDL) on scaled Metal-OxideSemiconductor Field-Effect Transistor (MOSFET) for low power application. The output of this research determined the implications of GIDL on the performance of MOSFET with various sizes that are supplied via low voltage power. The MOSFET design parameters were proposed by referring to the International Technology Roadmap for Semiconductors (ITRS), 2011 edition. SILVACO’s DEVEDIT and ATLAS software was used for this research to design a device structure and obtain output characteristics. Three MOSFETs with different physical gate length and several other parameters were designed and simulated. From the extracted data, it shows that as the size of MOSFET physical gate length become smaller, the leakage current tends to be higher. Apart from GIDL current (IGIDL) value, the “ON” current (ION) value and threshold voltage (VTH) value also been extracted for all MOSFET designs

    MEDIATION EFFECT OF KNOWLEDGE SHARING: A CASE STUDY OF MALAYSIAN NGO CULTURE AND EFFECTIVENESS

    Get PDF
    Referring to the resource-based view (RBV), this study aims to examine the mediating effect of knowledge sharing (KS) towards the relationship between organizational culture (OC) and NGO effectiveness (EE). In this study, a total of 190 participants from 19 NGOs in Klang Valley area, Malaysia, were approached with a questionnaire survey. This study only niches its focus on registered welfare and employment NGOs. A total of 144 valid responses were received (75.8 percent of response rate). Regression analysis was used to test the proposed model. The results revealed that KS serves as a partial mediator between OC and EE. The study makes methodological contribution by showing the effect of OC on EE and the role of KS as mediator from the context of Malaysian voluntary sector. Keywords: organizational culture, knowledge sharing, NGO, effectiveness, mediating effec

    Smaller self-inflating bags produce greater guideline consistent ventilation in simulated cardiopulmonary resuscitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suboptimal bag ventilation in cardiopulmonary resuscitation (CPR) has demonstrated detrimental physiological outcomes for cardiac arrest patients. In light of recent guideline changes for resuscitation, there is a need to identify the efficacy of bag ventilation by prehospital care providers. The objective of this study was to evaluate bag ventilation in relation to operator ability to achieve guideline consistent ventilation rate, tidal volume and minute volume when using two different capacity self-inflating bags in an undergraduate paramedic cohort.</p> <p>Methods</p> <p>An experimental study using a mechanical lung model and a simulated adult cardiac arrest to assess the ventilation ability of third year Monash University undergraduate paramedic students. Participants were instructed to ventilate using 1600 ml and 1000 ml bags for a length of two minutes at the correct rate and tidal volume for a patient undergoing CPR with an advanced airway. Ventilation rate and tidal volume were recorded using an analogue scale with mean values calculated. Ethics approval was granted.</p> <p>Results</p> <p>Suboptimal ventilation with the use of conventional 1600 ml bag was common, with 77% and 97% of participants unable to achieve guideline consistent ventilation rates and tidal volumes respectively. Reduced levels of suboptimal ventilation arouse from the use of the smaller bag with a 27% reduction in suboptimal tidal volumes (p = 0.015) and 23% reduction in suboptimal minute volumes (p = 0.045).</p> <p>Conclusion</p> <p>Smaller self-inflating bags reduce the incidence of suboptimal tidal volumes and minute volumes and produce greater guideline consistent results for cardiac arrest patients.</p

    Mechanical versus manual chest compressions in the treatment of in-hospital cardiac arrest patients in a non-shockable rhythm : a randomised controlled feasibility trial (COMPRESS-RCT)

    Get PDF
    Background Mechanical chest compression devices consistently deliver high-quality chest compressions. Small very low-quality studies suggest mechanical devices may be effective as an alternative to manual chest compressions in the treatment of adult in-hospital cardiac arrest patients. The aim of this feasibility trial is to assess the feasibility of conducting an effectiveness trial in this patient population. Methods COMPRESS-RCT is a multi-centre parallel group feasibility randomised controlled trial, designed to assess the feasibility of undertaking an effectiveness to compare the effect of mechanical chest compressions with manual chest compressions on 30-day survival following in-hospital cardiac arrest. Over approximately two years, 330 adult patients who sustain an in-hospital cardiac arrest and are in a non-shockable rhythm will be randomised in a 3:1 ratio to receive ongoing treatment with a mechanical chest compression device (LUCAS 2/3, Jolife AB/Stryker, Lund, Sweden) or continued manual chest compressions. It is intended that recruitment will occur on a 24/7 basis by the clinical cardiac arrest team. The primary study outcome is the proportion of eligible participants randomised in the study during site operational recruitment hours. Participants will be enrolled using a model of deferred consent, with consent for follow-up sought from patients or their consultee in those that survive the cardiac arrest event. The trial will have an embedded qualitative study, in which we will conduct semi-structured interviews with hospital staff to explore facilitators and barriers to study recruitment. Discussion The findings of COMPRESS-RCT will provide important information about the deliverability of an effectiveness trial to evaluate the effect on 30-day mortality of routine use of mechanical chest compression devices in adult in-hospital cardiac arrest patients

    Oxygen Reperfusion Damage in an Insect

    Get PDF
    The deleterious effects of anoxia followed by reperfusion with oxygen in higher animals including mammals are well known. A convenient and genetically well characterized small-animal model that exhibits reproducible, quantifiable oxygen reperfusion damage is currently lacking. Here we describe the dynamics of whole-organism metabolic recovery from anoxia in an insect, Drosophila melanogaster, and report that damage caused by oxygen reperfusion can be quantified in a novel but straightforward way. We monitored CO2 emission (an index of mitochondrial activity) and water vapor output (an index of neuromuscular control of the spiracles, which are valves between the outside air and the insect's tracheal system) during entry into, and recovery from, rapid-onset anoxia exposure with durations ranging from 7.5 to 120 minutes. Anoxia caused a brief peak of CO2 output followed by knock-out. Mitochondrial respiration ceased and the spiracle constrictor muscles relaxed, but then re-contracted, presumably powered by anaerobic processes. Reperfusion to sustained normoxia caused a bimodal re-activation of mitochondrial respiration, and in the case of the spiracle constrictor muscles, slow inactivation followed by re-activation. After long anoxia durations, both the bimodality of mitochondrial reactivation and the recovery of spiracular control were impaired. Repeated reperfusion followed by episodes of anoxia depressed mitochondrial respiratory flux rates and damaged the integrity of the spiracular control system in a dose-dependent fashion. This is the first time that physiological evidence of oxygen reperfusion damage has been described in an insect or any invertebrate. We suggest that some of the traditional approaches of insect respiratory biology, such as quantifying respiratory water loss, may facilitate using D. melanogaster as a convenient, well-characterized experimental model for studying the underlying biology and mechanisms of ischemia and reperfusion damage and its possible mitigation
    • …
    corecore