436 research outputs found
Portal für wissenschaftliche Arbeiten
Einer großen Anzahl zu betreuender Studien- und Diplomarbeiten stehen hohe Aufwände für
die Betreuung gegenüber. Mit dem Ziel, die Aufwände für Administration und Prozessdokumentation zu reduzieren, wurde am Lehrstuhl für Fabrikorganisation das Portal für wissenschaftliche Arbeiten, eine datenbank- und webbasierte Softwareanwendung, entwickelt und implementiert. Der vorliegende Text verdeutlicht Motivation und Zielsetzung der Einführung des neuen Systems. Anschließend werden die Funktionen vorgestellt, die das Portal Studierenden sowie Betreuenden bietet, bevor auf die die technische Realisierung eingegangen wird. Nachfolgend wird dargestellt, welchen Beitrag das neue Portal einerseits zum Wissensmanagement und andererseits zum Wissenschaftsmanagement am Lehrstuhl für Fabrikorganisation leistet. Abschließend werden mögliche Verbesserungspotenziale aufgezeigt und konkret geplante Erweiterungen genannt
Evaluation d'une radiothèrapie nano-vectorisée utilisant des nanocapsules lipidiques chargées en Rhénium-188 pour le traitement du glioblastome
Time for Decarbonization of Conservation and Development Projects? The Political Ecology of Carbon Projects
The globe's first carbon projects were designed and implemented approximately 20 years ago following scientific insights that emissions of greenhouse gases needed to be mitigated. Visible in some of these early projects were the important aspects of social governance and local benefit sharing. The projects promised to be a panacea to environmental, social and economic problems in remote rural areas of developing countries. However, it took another decade before a wave of hundreds of carbon projects were launched. Many of the projects were offered under the mechanism of REDD+ (Reducing Emissions from Deforestation and forest Degradation, plus the role of conservation, sustainable forest management and carbon enhancement), as well as under a variety of voluntary schemes and national programs, public-private partnerships, and forestry-based investment initiatives. As decision-makers prepare the Conference of the Parties of the United Nations Framework Convention on Climatic Change in Paris (COP21), Earthscan has released a book entitled `Carbon conflicts and forest landscapes in Africa', edited by Melissa Leach and Ian Scoones. According to the editors, the focus of the book is on what happens on the ground when carbon forestry projects arrive, what types of projects work, and, equally important, what doesn’t work
Time for Decarbonization of Conservation and Development Projects? The Political Ecology of Carbon Projects
The globe's first carbon projects were designed and implemented approximately 20 years ago following scientific insights that emissions of greenhouse gases needed to be mitigated. Visible in some of these early projects were the important aspects of social governance and local benefit sharing. The projects promised to be a panacea to environmental, social and economic problems in remote rural areas of developing countries. However, it took another decade before a wave of hundreds of carbon projects were launched. Many of the projects were offered under the mechanism of REDD+ (Reducing Emissions from Deforestation and forest Degradation, plus the role of conservation, sustainable forest management and carbon enhancement), as well as under a variety of voluntary schemes and national programs, public-private partnerships, and forestry-based investment initiatives. As decision-makers prepare the Conference of the Parties of the United Nations Framework Convention on Climatic Change in Paris (COP21), Earthscan has released a book entitled `Carbon conflicts and forest landscapes in Africa', edited by Melissa Leach and Ian Scoones. According to the editors, the focus of the book is on what happens on the ground when carbon forestry projects arrive, what types of projects work, and, equally important, what doesn’t work
Time for decarbonization of conservation and development projects? The political ecology of carbon projects
The globe's first carbon projects were designed and implemented approximately 20 years ago following scientific insights that emissions of greenhouse gases needed to be mitigated. Visible in some of these early projects were the important aspects of social governance and local benefit sharing. The projects promised to be a panacea to environmental, social and economic problems in remote rural areas of developing countries. However, it took another decade before a wave of hundreds of carbon projects were launched. Many of the projects were offered under the mechanism of REDD+ (Reducing Emissions from Deforestation and forest Degradation, plus the role of conservation, sustainable forest management and carbon enhancement), as well as under a variety of voluntary schemes and national programs, public-private partnerships, and forestry-based investment initiatives. As decision-makers prepare the Conference of the Parties of the United Nations Framework Convention on Climatic Change in Paris (COP21), Earthscan has released a book entitled `Carbon conflicts and forest landscapes in Africa', edited by Melissa Leach and Ian Scoones. According to the editors, the focus of the book is on what happens on the ground when carbon forestry projects arrive, what types of projects work, and, equally important, what doesn’t work
Ein ökosystembasierter Ansatz für den Umgang mit der Waldkrise in der Klimakrise
Die vorherrschenden Strömungen in Diskurs und Praxis forstlicher Klimawandelanpassungen stehen einem ökosystembasierten Ansatz entgegen. Es wird auf Baumarten fokussiert; aktive Anpassung bedeutet oftmals das Anpflanzen ökosystemfremder Arten. Die Bemühungen, zukünftige Waldtypen möglichst artenscharf zu definieren, offenbaren ein deterministisches Gestaltungsparadigma. Dieses kann darauf zurückgeführt werden, dass die bioenergetisch bzw. thermodynamisch untermauerte Nichtgleichgewichtsökologie nicht rezipiert wurde. Auf der Grundlage aktueller systemökologischer Theorien und Befunde wird in zehn Prinzipien ein Ansatz ökosystembasierten Waldmanagements skizziert. Ökosystemfunktionalität kann thermodynamisch beschrieben und quantifiziert werden; im Mittelpunkt steht die Energie-dissipation(sfähigkeit). Ökosystembiomasse und -informationsgehalt sowie ein kohärentes holarchisches Netzwerk sind die Grundlage für die physikalische Arbeitsfähigkeit, aber auch für Resistenz und Resilienz. Aus den thermodynamischen Eigenschaften und der Komplexität ergeben sich ontische Offenheit und Unbestimmtheit von Waldökosystemen. Ein ökosystembasiertes Waldmanagement fokussiert auf Strukturen und Prozesse, die Kühlung und Wasserrückhaltung sowie Selbstregulation im System vermitteln
Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change
<p>Abstract</p> <p>Background</p> <p>Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' <it>Convention on Biological Diversity</it>. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades.</p> <p>Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research.</p> <p>Results</p> <p>Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably.</p> <p>Conclusion</p> <p>The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that existing models have been underutilized in testing different management options under climate change. Based on these findings we suggest a strategic framework for more effectively incorporating the impact of climate change in models exploring the effectiveness of protected areas.</p
Recommended from our members
Spatial and species-level predictions of road mortality risk using trait data
Aim: Wildlife-vehicle collisions are recognized as one of the major causes of mortality for many species. Empirical estimates of road mortality show that some species are more likely to be killed than others but to what extend this variation can be explained and predicted using intrinsic species characteristics remains poorly understood. This study aims to identify general macroecological patterns associated to road mortality and generate spatial and species-level predictions of risks.
Location: Brazil
Time period: 2001-2014
Major taxa: Birds and mammals
Methods: We fitted trait-based random forest regression models (controlling for survey characteristics) to explain 783 empirical road mortality rates from Brazil, representing 170 bird and 73 mammalian species. Fitted models were then used to make spatial and species-level prediction of road mortality risk in Brazil considering 1775 birds and 623 mammals which occur within the country’s continental boundaries.
Results: Survey frequency and geographic location were key predictors of observed rates, but mortality was also explained by species’ body size, reproductive speed and ecological specialization. Spatial predictions revealed high potential standardized (per km road) mortality risk in Amazonia for birds and mammals, and additionally high risk in Southern Brazil for mammals. Given the existing road network, these predictions mean more than 8 million birds and 2 million mammals could be killed per year in Brazilian roads. Furthermore, predicted rates for all Brazilian endotherm uncovered potential vulnerability to road mortality of several understudied species which are currently listed as threatened by the IUCN.
Conclusion: With a fast-expanding global road network, there is an urgent need to develop improved approaches to assess and predict road-related impacts. This study illustrates the potential of trait-based models as assessment tools to better understand correlates of vulnerability to road mortality across species, and as predictive tools for difficult to sample or understudied species and areas
Does fragmentation contribute to the forest crisis in Germany?
Intact forests contribute to the ecosystem functionality of landscapes by storing and sequestering carbon, buffering and cooling the microclimate, and providing a range of related ecosystem functions. Forest fragmentation not only poses a threat to many organisms but also reduces the resistance and resilience of the ecosystem, which is especially relevant to the ongoing climate crisis. The effects of recent extreme heat years on forests in Germany have not been studied in detail for the influence of fragmentation. We investigate the relation of forest fragmentation with temperature and vitality in Germany per ecoregion at the canopy level using satellite imagery at 1-km and 30-m resolution. We compiled and correlated forest maps for connectivity based on Thiessen polygons, canopy temperatures on the hottest days based on land surface temperature, and forest vitality based on the maximum normalized difference vegetation index per growing season. We differentiated between ecoregions and main forest types. In 2022, larger intact tree-covered areas that are less fragmented have relatively low temperatures on hot days and higher overall vitality. Nearly 98% of the almost 1.95 million forest fragments at 30-m resolution in Germany are smaller than 1 km2, which cover nearly 30% of the total forest area. To counteract the forest crisis, forest and landscape management should aim to reduce fragmentation and maintain tree biomass and forest cover in the landscape. Increasing the size of continuous forest fragments contributes to ecosystem-based adaptation to climate change
Mapping roadless areas in regionswith contrasting human footprint
In an increasingly human- and road-dominated world, the preservation of functional ecosystems has become highly relevant. While the negative ecological impacts of roads on ecosystems are numerous and well documented, roadless areas have been proposed as proxy for functional ecosystems. However, their potential remains underexplored, partly due to the incomplete mapping of roads. We assessed the accuracy of roadless areas identification using freely available road-data in two regions with contrasting levels of anthropogenic influence: boreal Canada and temperate Central Europe (Poland, Slovakia, Czechia, and Hungary). Within randomly selected circular plots (per region and country), we visually examined the completeness of road mapping using OpenStreetMap 2020 and assessed whether human influences affect mapping quality using four variables. In boreal Canada, roads were completely mapped in 3% of the plots, compared to 40% in Central Europe. Lower Human Footprint Index and road density values were related to greater incompleteness in road mapping. Roadless areas, defined as areas at least 1 km away from any road, covered 85% of the surface in boreal Canada (mean size ± s.d. = 272 ± 12,197 km2), compared to only 0.4% in temperate Central Europe (mean size ± s.d. = 0.6 ± 3.1 km2). By visually interpreting and manually adding unmapped roads in 30 randomly selected roadless areas from each study country, we observed a similar reduction in roadless surface in both Canada and Central Europe (27% vs 28%) when all roads were included. This study highlights the urgent need for improved road mapping techniques to support research on roadless areas as conservation targets and surrogates of functional ecosystems. Roadless areas, OpenStreetMap, Road mapping, Road ecology, Anthropogenic impact, Human footprint index, Human modification index, Travel time to major citiespublishedVersio
- …
