9 research outputs found
Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides
The direct synthesis of NOx from N2 and O2 by non-thermal plasma at an atmospheric pressure and low temperature is presented, which is considered to be an attractive option for replacement of the Haber-Bosch process. In this study, the direct synthesis of NOx was studied by packing different catalyst support materials in a dielectric barrier discharge (DBD) reactor. The support materials and their particle sizes both had a significant effect on the concentration of NOx. This is attributed to different surface areas, relative dielectric constants and particles shapes. The nitrogen could be fixed at substantially lowered temperatures by employing non-thermal plasma-catalytic DBD reactor, which can be used as an alternative technology for low temperature synthesis. The γ-Al2O3 with smallest particles size of 250–160 μm, gave the highest concentration of NOx and the lowest specific energy consumption of all the tested materials and particle sizes. The NOx concentration of 5700 ppm was reached at the highest residence time of 0.4 s and an N2/O2 feed ratio of 1 was found to be the most optimum for NOx production. In order to intensify the NOx production in plasma, a series of metal oxide catalysts supported on γ-Al2O3 were tested in a packed DBD reactor. A 5% WO3/γ-Al2O3 catalyst increased the NOx concentration further by about 10% compared to γ-Al2O3, while oxidation catalysts such as Co3O4 and PbO provided a minor (∼5%) improvement. These data suggest that oxygen activation plays a minor role in plasma catalytic nitrogen fixation under the studied conditions with the main role ascribed to the generation of microdischarges on sharp edges of large-surface area plasma catalysts. However, when the loading of active metal oxides was increased to 10%, NO selectivity decreased, suggesting possibility of thermal oxidation of NO to NO2 through reaction with surface oxygen species
Ultrasound-assisted selective hydrogenation of C-5 acetylene alcohols with Lindlar catalysts
The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.Financial support from the European Commission for the MAPSYN project is greatly acknowledged (MAPSYN.eu No. CP-IP 309376)
Design and synthesis of polymetallic nanoparticles and their catalytic applications
High-temperature hydrogen reduction reactions enable the synthesis and processing of binary metal oxide composite nanoparticles starting from titanium, ruthenium, and silicon, while the use of a surface modifier and an organic surfactant enables the synthesis of catalytic thin films from binary semiconductor oxides. Surface characterization by XRD, SEM, TEM, AFM, Raman spectroscopy, and BET measurements indicate that the incorporation of binary oxide particles into the semiconductor materials altered the surface properties and morphology of the nanoparticles while the surface modifier and organic surfactant loading can be experimentally adjusted to obtain thin films of varying morphological characteristics
Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation
SiO2/RuO2 modified high surface area titania dioxide nanoparticles prepared by hydrogen reduction were examined for their catalytic properties towards the photodegradation of methyl orange (MO), a common water pollutant in the textile industry. The modified materials present enhanced photocatalytic activity and can decompose the MO faster than the unmodified TiO2. Results showed that doping with RuO2 only offered a marginal benefit over TiO2 alone. On the other hand, modification of TiO2 with RuO2 and SiO2 resulted in a marked increase in the rate constant and the photodegradation efficiency. These results are consistent with the unique structural, morphologoical and surface characteristics of the composite titania dioxide/ruthenium dioxide/silicon dioxide materials. The lower the average particle size and roughness of the materials, the higher the percentage of photodecomposition and the rate constant. The surface doping and modification effects thus appears synergetic to the charge separation process and the photocatalytic results are explained on the basis of the mechanism that involves efficient separation of electron-hole pairs induced by the silicon dioxide particles. This enhances the ability of the modified TiO2 particles to effectively capture protons. Results also show that the modified nanoparticles can be used repeatedly over a long time without loss of efficiency. (c) 2007 Elsevier B.V. All rights reserved
The photocatalytic activity and kinetics of the degradation of an anionic azo-dye in a UV irradiated porous titania foam
A porous organic-inorganic hybrid titania foam, prepared from a long chain organic surfactant, hexadecylamine (HDA) and a semiconductor powder was characterized by microscopic and spectroscopic techniques and photocatalytically evaluated for the solution phase decomposition of methyl orange under alkaline conditions. Kinetic data obtained indicate conformity with Langmuir-Hinshelwood kinetic model at the initial stages of the degradation reaction. An attempt was made to study the effect of experimental parameters including catalyst loading and dye concentration on photocatalytic degradation of MO. Results indicate that the rate of reaction is governed by adsorption of azo-dye into the surface of the photocatalyst materials and suggests an optimum catalyst load and dye concentration for the degradation reaction. Light absorption and scattering within the substrate reaction zone and arising from differences in optical properties of catalyst material, made it impossible to interpret entire kinetic data on the basis of a simple Langmuir-Hinshelwood kinetics. However, kinetic data obtained at the initial stages of the reaction suggest conformity with first-order kinetics. The foam promises to be a versatile material in that it can be used for the treatment of low concentrations of pollutants of biological, organic and inorganic origins in water and air. (C) 2008 Elsevier B.V. All rights reserved
The photocatalytic activity of TiO2 foam and surface modified binary oxide titania nanoparticles
Surface modified titania dioxide composite nanoparticles prepared by hydrogen reduction reaction and a mesoporous TiO2 foam made from a surface modifier and a long chain organic surfactant were characterized by diffractive, spectroscopic and microscopic techniques and studied for their catalytic activity towards the decomposition of an industrial water pollutant, methyl orange. The surface deposition of ruthenium and silicon particles improved the photocatalytic activity of the composite particles resulting in a faster decomposition of the methyl orange compared to commercial TiO2 alone. Modification of TiO2 With RuO2 only offered a marginal benefit over TiO2 while the incorporation of RuO2 and SiO2 into TiO2 resulted in a marked increase in the rate constant and catalytic activity. These results are consistent with the enhanced surface properties of the composite materials resulting from the modification of TiO2 with RuO2 and SiO2. This surface enhancement effects appear synergetic to the charge separation process and hence the photocatalytic results are explained on the basis of a mechanism involving efficient charge transfer across the interfaces of the composites involving photogenerated electron-hole pairs. Results obtained in this study show that the percentage degradation after 1 h of illumination was 47.15% for TiO2 foam, 75.5 and 106.4%, respectively, for TiO2/RUO2 (SiO2 5%, w/w) and TiO2/RuO2(SiO2 10%, w/w) and 34.15% for commercial TiO2. (C) 2008 Elsevier B.V. All rights reserved
A review of the existing and alternative methods for greener nitrogen fixation
The conversion of atmospheric nitrogen into valuable substances such as fertilisers and fine chemicals is essential for agriculture and many other processes that sustain life on the planet. Although the Haber–Bosch process is the most important method of nitrogen fixation, the process is associated with major environmental concerns because it is very energy intensive and requires non-renewable feedstock to generate hydrogen. Hence, alternative ways of nitrogen fixation are being studied, from plasma synthesis and biological processes to metallocomplex catalysis, while existing methods are being improved using novel catalysts. This review covers all of the major areas of nitrogen fixation, discusses the industrial feasibility of each process, the reaction mechanisms, and provides a comparative evaluation of the various nitrogen fixation processes in terms of energy efficiency. Considering energy efficiency, the Haber–Bosch process and non-thermal plasma nitrogen fixation are promising methods for green industrial nitrogen fixation. Although metallocomplex nitrogen fixation takes place at ambient pressures, energy estimations show that this method does not provide higher energy efficiency than biological nitrogen fixation or the Haber–Bosch process. Biological nitrogen fixation on the other hand, has energy efficiency comparable to that of the Haber–Bosch process