442 research outputs found

    An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate

    Full text link
    There is wide agreement that Type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for ~1e7 yr before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of ~30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than ~5 per cent of Type Ia supernovae in early type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.Comment: 10 pages, 1 tabl

    Solar Neutrinos from CNO Electron Capture

    Full text link
    The neutrino flux from the sun is predicted to have a CNO-cycle contribution as well as the known pp-chain component. Previously, only the fluxes from beta+ decays of 13N, 15O, and 17F have been calculated in detail. Another neutrino component that has not been widely considered is electron capture on these nuclei. We calculate the number of interactions in several solar neutrino detectors due to neutrinos from electron capture on 13N, 15O, and 17F, within the context of the Standard Solar Model. We also discuss possible non-standard models where the CNO flux is increased.Comment: 4 pages, 1 figure, submitted to Phys. Rev. C; v2 has minor changes including integration over solar volume and addition of missing reference to previous continuum electron capture calculation; v3 has minor changes including addition of references and the correction of a small (about 1%) numerical error in the table

    Supersoft X-ray Sources. Basic Parameters

    Full text link
    The parameters of ten supersoft X-ray sources (RX J0439.8-6809, RX J0513.9-6951, RX J0527.8-6954, CAL 87, CAL 83, 1E 0035.4-7230, RX J0048.4-7332, 1E 0056.8-7154, RX J0019.8 +2156, RX J0925.7-4758) observed by ROSAT obtained using blanketing LTE model atmospheres are analyzed. The consistency of the resulting parameters with a model with stable/recurrent burning on the surface of the white dwarf is studied. The luminosity and sizes of seven of the sources are in good agreement with this model. The masses of the white dwarfs in these sources are estimated. A formula that can be used to estimate the masses of white dwarfs in classical supersoft sources based on their effective temperatures is presented.Comment: 8 pages, 2 tables, 4 figure

    UV and X-Ray Monitoring of AG Draconis During the 1994/1995 Outbursts

    Full text link
    The recent 1994-1995 active phase of AG Draconis has given us for the first time the opportunity to follow the full X-ray behaviour of a symbiotic star during two successive outbursts and to compare with its quiescence X-ray emission. With \ros observations we have discovered a remarkable decrease of the X-ray flux during both optical maxima, followed by a gradual recovering to the pre-outburst flux. In the UV the events were characterized by a large increase of the emission line and continuum fluxes, comparable to the behaviour of AG Dra during the 1980-81 active phase. The anticorrelation of X-ray/UV flux and optical brightness evolution is shown to very likely be due to a temperature decrease of the hot component. Such a temperature decrease could be produced by an increased mass transfer to the burning compact object, causing it to slowly expand to about twice its original size.Comment: 12 pages postscript incl. figures, Proc. of Workshop on Supersoft X-Ray Sources, to appear in Lecture Notes in Physics vol. 472 (1996

    Some analytical models of radiating collapsing spheres

    Get PDF
    We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late

    BBN and the Primordial Abundances

    Full text link
    The relic abundances of the light elements synthesized during the first few minutes of the evolution of the Universe provide unique probes of cosmology and the building blocks for stellar and galactic chemical evolution, while also enabling constraints on the baryon (nucleon) density and on models of particle physics beyond the standard model. Recent WMAP analyses of the CBR temperature fluctuation spectrum, combined with other, relevant, observational data, has yielded very tight constraints on the baryon density, permitting a detailed, quantitative confrontation of the predictions of Big Bang Nucleosynthesis with the post-BBN abundances inferred from observational data. The current status of this comparison is presented, with an emphasis on the challenges to astronomy, astrophysics, particle physics, and cosmology it identifies.Comment: To appear in the Proceedings of the ESO/Arcetri Workshop on "Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites", eds., L. Pasquini and S. Randich (Springer-Verlag Series, "ESO Astrophysics Symposia"

    HE 0557-4840 - Ultra-Metal-Poor and Carbon-Rich

    Full text link
    We report the discovery and high-resolution, high S/N, spectroscopic analysis of the ultra-metal-poor red giant HE 0557-4840, which is the third most heavy-element deficient star currently known. Its atmospheric parameters are T_eff = 4900 K, log g = 2.2, and [Fe/H]= -4.75. This brings the number of stars with [Fe/H] < -4.0 to three, and the discovery of HE 0557-4840 suggests that the metallicity distribution function of the Galactic halo does not have a "gap" between [Fe/H] = -4.0, where several stars are known, and the two most metal-poor stars, at [Fe/H] ~ -5.3. HE 0557-4840 is carbon rich - [C/Fe] = +1.6 - a property shared by all three objects with [Fe/H] < -4.0, suggesting that the well-known increase of carbon relative to iron with decreasing [Fe/H] reaches its logical conclusion - ubiquitous carbon richness - at lowest abundance. We also present abundances (nine) and limits (nine) for a further 18 elements. For species having well-measured abundances or strong upper limits, HE 0557-4840 is "normal" in comparison with the bulk of the stellar population at [Fe/H] ~ -4.0 - with the possible exception of Co. We discuss the implications of these results for chemical enrichment at the earliest times, in the context of single ("mixing and fallback") and two-component enrichment models. While neither offers a clear solution, the latter appears closer to the mark. Further data are required to determine the oxygen abundance and improve that of Co, and hence more strongly constrain the origin of this object.Comment: Submitted to Astrophysical Journal. 52 pages (41 text, 11 figures

    Cluster-based density-functional approach to quantum transport through molecular and atomic contacts

    Get PDF
    We present a cluster-based density-functional approach to model charge transport through molecular and atomic contacts. The electronic structure of the contacts is determined in the framework of density functional theory, and the parameters needed to describe transport are extracted from finite clusters. A similar procedure, restricted to nearest-neighbor interactions in the electrodes, has been presented by Damle et al. [Chem. Phys. 281, 171 (2002)]. Here, we show how to systematically improve the description of the electrodes by extracting bulk parameters from sufficiently large metal clusters. In this way we avoid problems arising from the use of nonorthogonal basis functions. For demonstration we apply our method to electron transport through Au contacts with various atomic-chain configurations and to a single-atom contact of Al.Comment: 18 pages, 13 figure

    On the helium content of Galactic globular clusters via the R parameter

    Full text link
    We estimate the empirical R parameter in 26 Galactic Globular Clusters covering a wide metallicity range, imaged by WFPC2 on board the HST. The improved spatial resolution permits a large fraction of the evolved stars to be measured and permits accurate assessment of radial populaton gradients and completeness corrections. In order to evaluate both the He abundance and the He to metal enrichment ratio, we construct a large set of evolutionary models by adopting similar metallicities and different He contents. We find an absolute He abundance which is lower than that estimated from spectroscopic measurements in HII regions and from primordial nucleosynthesis models. This discrepancy could be removed by adopting a C12O16 nuclear cross section about a factor of two smaller than the canonical value, although also different assumptions for mixing processes can introduce systematical effects. The trend in the R parameter toward solar metallicity is consistent with an upper limit to the He to metal enrichment ratio of the order of 2.5.Comment: accepted for pubblication on Ap

    The Shortest Period Detached Binary White Dwarf System

    Full text link
    We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest period detached binary white dwarf (WD) system currently known. We targeted J0106-1000 as part of our radial velocity program to search for companions around known extremely low-mass (ELM, ~ 0.2 Msol) WDs using the 6.5m MMT. We detect peak-to-peak radial velocity variations of 740 km/s with an orbital period of 39.1 min. The mass function and optical photometry rule out a main-sequence star companion. Follow-up high-speed photometric observations obtained at the McDonald 2.1m telescope reveal ellipsoidal variations from the distorted primary but no eclipses. This is the first example of a tidally distorted WD. Modeling the lightcurve, we constrain the inclination angle of the system to be 67 +- 13 deg. J0106-1000 contains a pair of WDs (0.17 Msol primary + 0.43 Msol invisible secondary) at a separation of 0.32 Rsol. The two WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf star. J0106-1000 is the shortest timescale merger system currently known. The gravitational wave strain from J0106-1000 is at the detection limit of the Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and orbital period measurements may enable LISA to detect J0106-1000 above the Galactic background noise.Comment: MNRAS Letters, in pres
    • 

    corecore