15 research outputs found

    Epigenetics in mental and neurodegenerative disorders:The unusual suspects

    Get PDF

    Genome-wide DNA Methylation Meta-analysis in the Brains of Suicide Completers

    Get PDF
    Suicide is the second leading cause of death globally among young people representing a significant global health burden. Although the molecular correlates of suicide remains poorly understood, it has been hypothesised that epigenomic processes may play a role. The objective of this study was to identify suicide-associated DNA methylation changes in the human brain by utilising previously published and unpublished methylomic datasets. We analysed prefrontal cortex (PFC, n = 211) and cerebellum (CER, n = 114) DNA methylation profiles from suicide completers and non-psychiatric, sudden-death controls, meta-analysing data from independent cohorts for each brain region separately. We report evidence for altered DNA methylation at several genetic loci in suicide cases compared to controls in both brain regions with suicide-associated differentially methylated positions enriched among functional pathways relevant to psychiatric phenotypes and suicidality, including nervous system development (PFC) and regulation of long-term synaptic depression (CER). In addition, we examined the functional consequences of variable DNA methylation within a PFC suicide-associated differentially methylated region (PSORS1C3 DMR) using a dual luciferase assay and examined expression of nearby genes. DNA methylation within this region was associated with decreased expression of firefly luciferase but was not associated with expression of nearby genes, PSORS1C3 and POU5F1. Our data suggest that suicide is associated with DNA methylation, offering novel insights into the molecular pathology associated with suicidality

    Genome-wide characterization of mitochondrial DNA methylation in human brain

    Get PDF
    BackgroundThere is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors.ResultsWe show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study.ConclusionsWe have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction

    Robust, scalable, and informative clustering for diverse biological networks

    No full text
    Abstract Clustering molecular data into informative groups is a primary step in extracting robust conclusions from big data. However, due to foundational issues in how they are defined and detected, such clusters are not always reliable, leading to unstable conclusions. We compare popular clustering algorithms across thousands of synthetic and real biological datasets, including a new consensus clustering algorithm—SpeakEasy2: Champagne. These tests identify trends in performance, show no single method is universally optimal, and allow us to examine factors behind variation in performance. Multiple metrics indicate SpeakEasy2 generally provides robust, scalable, and informative clusters for a range of applications

    Dissecting the human leptomeninges at single-cell resolution

    No full text
    Abstract Emerging evidence shows that the meninges conduct essential immune surveillance and immune defense at the brain border, and the dysfunction of meningeal immunity contributes to aging and neurodegeneration. However, no study exists on the molecular properties of cell types within human leptomeninges. Here, we provide single nuclei profiling of dissected postmortem leptomeninges from aged individuals. We detect diverse cell types, including unique meningeal endothelial, mural, and fibroblast subtypes. For immune cells, we show that most T cells express CD8 and bear characteristics of tissue-resident memory T cells. We also identify distinct subtypes of border-associated macrophages (BAMs) that display differential gene expressions from microglia and express risk genes for Alzheimer’s Disease (AD), as nominated by genome-wide association studies (GWAS). We discover cell-type-specific differentially expressed genes in individuals with Alzheimer’s dementia, particularly in fibroblasts and BAMs. Indeed, when cultured, leptomeningeal cells display the signature of ex vivo AD fibroblasts upon amyloid-β treatment. We further explore ligand-receptor interactions within the leptomeningeal niche and computationally infer intercellular communications in AD. Thus, our study establishes a molecular map of human leptomeningeal cell types, providing significant insight into the border immune and fibrotic responses in AD

    A glucose-based molecular rotor inhibitor of glycogen phosphorylase as a probe of cellular enzymatic function

    No full text
    Molecular rotors belong to a family of fluorescent compounds characterized as molecular switches, where a fluorescence on/off signal signifies a change in the molecule's microenvironment. Herein, the successful synthesis and detailed study of (E)-2-cyano-3-(p-(dimethylamino)phenyl)-N-(beta-D-glucopyranosyl)acrylam ide (RotA), is reported. RotA was found to be a strong inhibitor of rabbit muscle glycogen phosphorylase (RMGPb), that binds at the catalytic site of the enzyme. RotA's interactions with the residues lining the catalytic site of RMGPb were determined by X-ray crystallography. Spectroscopic studies coupled with theoretical calculations proved that RotA is a molecular rotor. When bound in the catalytic channel of RMGPb, it behaved as a light switch, generating a strong fluorescence signal, allowing utilization of RotA as a probe that locates glycogen phosphorylase (GP). RotA, mono-, di- and per-acetylated derivatives, as well as nanoparticles with RotA encapsulated in polyethylene glycol-poly-L-histidine, were used in live cell fluorescence microscopy imaging to test the delivery of RotA through the plasma membrane of HepG2 and A431 cells, with the nanoparticles providing the best results. Once in the intracellular milieu, RotA exhibits remarkable colocalization with GP and significant biological effects, both in cell growth and inhibition of GP

    Genome-wide characterization of mitochondrial DNA methylation in human brain

    Get PDF
    BackgroundThere is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors.ResultsWe show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study.ConclusionsWe have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.</jats:sec

    Dawn hypertension in pre-Cushing's syndrome: report of two cases

    Get PDF
    49歳女, 51歳女, クッシング症候群および2例の非機能性副腎腺腫の症例を加え, それらの血圧の日内変動を検討した結果, プレクッシング症候群はクッシング症候群にいたる過渡的疾患であり, 暁星高血圧はその特徴的臨床症状と考えられたTwo adrenal tumors were incidentally discovered in the patients with dawn hypertension. They had no clinical features of Cushing's syndrome. These cases were regarded as pre-Cushing's syndrome by endocrinological evaluation. After adrenalectomy, the adrenal hormone regulation was normalized and dawn hypertension disappeared. Our findings suggest that dawn hypertension is a typical clinical sign of pre-Cushing's syndrome and this syndrome may represent a premature status of Cushing's syndrome
    corecore