30 research outputs found

    Initial Results and Literature Review

    Get PDF
    Aim: To evaluate the role of stereotactic body radiation therapy in the retreatment of locally recurrent cervical cancers. Brachytherapy is the main choice to treat gynecologic cancers. Methods: Patients with recurrent cervical cancer, previously submitted to radiotherapy, were treated with stereotactic body radiation therapy using a CyberKnife system (Accuray Incorporated, Sunnyvale, California) with a fiducial tracking system. Results: From August 2011 to October 2014, 5 patients have been treated. Median age was 81 years (range, 70-84 years). Two patients were diagnosed with adenocarcinoma endometrioid and 3 with squamous cell carcinoma. Toxicity was scored according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. After a median follow-up of 12 months (range, 8-34 months), no severe (>grade 3) acute/late genitourinary or low gastrointestinal toxicity was observed. Conclusion: Our preliminary results of stereotactic body radiation therapy "simulating" high dose rate for recurrent cervical cancers confirm a minimal toxicity and an optimal outcome. The stereotactic body radiation therapy is an alternative to high dose rate brachytherapy for gynecologic tumors

    3D-Printing of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries

    Get PDF
    open9noRadiosurgery of arteriovenous malformations (AVMs) is a challenging procedure. Accuracy of target volume contouring is one major issue to achieve AVM obliteration while avoiding disastrous complications due to suboptimal treatment. We describe a technique to improve the understanding of the complex AVM angioarchitecture by 3D prototyping of individual lesions. Arteriovenous malformations of ten patients were prototyped by 3D printing using 3D rotational angiography (3DRA) as a template. A target volume was obtained using the 3DRA; a second volume was obtained, without awareness of the first volume, using 3DRA and the 3D-printed model. The two volumes were superimposed and the conjoint and disjoint volumes were measured. We also calculated the time needed to perform contouring and assessed the confidence of the surgeons in the definition of the target volumes using a six-point scale. The time required for the contouring of the target lesion was shorter when the surgeons used the 3D-printed model of the AVM (p=0.001). The average volume contoured without the 3D model was 5.6 ± 3 mL whereas it was 5.2 ± 2.9 mL with the 3D-printed model (p=0.003). The 3D prototypes proved to be spatially reliable. Surgeons were absolutely confident or very confident in all cases that the volume contoured using the 3D-printed model was plausible and corresponded to the real boundaries of the lesion. The total cost for each case was 50 euros whereas the cost of the 3D printer was 1600 euros. 3D prototyping of AVMs is a simple, affordable, and spatially reliable procedure that can be beneficial for radiosurgery treatment planning. According to our preliminary data, individual prototyping of the brain circulation provides an intuitive comprehension of the 3D anatomy of the lesion that can be rapidly and reliably translated into the target volume.openCONTI, Alfredo; PONTORIERO, ANTONIO; IATI', GIUSEPPE; MARINO, DANIELE; LA TORRE, Domenico; VINCI, Sergio Lucio; GERMANO', Antonino Francesco; PERGOLIZZI, Stefano; TOMASELLO, FrancescoCONTI, Alfredo; PONTORIERO, ANTONIO; IATI', GIUSEPPE; MARINO, DANIELE; LA TORRE, Domenico; VINCI, Sergio Lucio; GERMANO', Antonino Francesco; PERGOLIZZI, Stefano; TOMASELLO, Francesc

    Optical trapping of silver nanoplatelets

    Get PDF
    Optical trapping of silver nanoplatelets obtained with a simple room temperature chemical synthesis technique is reported. Trap spring constants are measured for platelets with different diameters to investigate the size-scaling behaviour. Experimental data are compared with models of optical forces based on the dipole approximation and on electromagnetic scattering within a T-matrix framework. Finally, we discuss applications of these nanoplatelets for surface-enhanced Raman spectroscopy

    Image-guided robotic radiosurgery for the treatment of arteriovenous malformations

    Get PDF
    Cerebral arteriovenous malformations (AVMs) are challenging lesions, often requiring multimodal interventions; however, data on the efficacy of stereotactic radiosurgery for cerebral AVMs are limited. This study aimed to evaluate the clinical and radiographic results following robotic radiosurgery, alone or in combination with endovascular treatment, and to investigate factors associated with obliteration and complications in patients with AVM

    Roadmap for Optical Tweezers 2023

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nanoparticle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration

    3D-Printing of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries

    No full text
    Radiosurgery of arteriovenous malformations (AVMs) is a challenging procedure. Accuracy of target volume contouring is one major issue to achieve AVM obliteration while avoiding disastrous complications due to suboptimal treatment. We describe a technique to improve the understanding of the complex AVM angioarchitecture by 3D prototyping of individual lesions. Arteriovenous malformations of ten patients were prototyped by 3D printing using 3D rotational angiography (3DRA) as a template. A target volume was obtained using the 3DRA; a second volume was obtained, without awareness of the first volume, using 3DRA and the 3D-printed model. The two volumes were superimposed and the conjoint and disjoint volumes were measured. We also calculated the time needed to perform contouring and assessed the confidence of the surgeons in the definition of the target volumes using a six-point scale. The time required for the contouring of the target lesion was shorter when the surgeons used the 3D-printed model of the AVM (p=0.001). The average volume contoured without the 3D model was 5.6 ± 3 mL whereas it was 5.2 ± 2.9 mL with the 3D-printed model (p=0.003). The 3D prototypes proved to be spatially reliable. Surgeons were absolutely confident or very confident in all cases that the volume contoured using the 3D-printed model was plausible and corresponded to the real boundaries of the lesion. The total cost for each case was 50 euros whereas the cost of the 3D printer was 1600 euros. 3D prototyping of AVMs is a simple, affordable, and spatially reliable procedure that can be beneficial for radiosurgery treatment planning. According to our preliminary data, individual prototyping of the brain circulation provides an intuitive comprehension of the 3D anatomy of the lesion that can be rapidly and reliably translated into the target volume

    Post-Treatment Edema after Meningioma Radiosurgery is a Predictable Complication

    No full text
    Symptomatic post-treatment edema (PTE) causing seizures, focal deficits, and intracranial hypertension is a rather common complication of meningioma radiosurgery. Factors associated to the occurrence of PTE still needs to be clarified. We retrospectively analyzed our patients’ data to identify factors associated with the development of symptomatic PTE. Supposed risk factors were systematically analyzed. Between July 2007 and March 2014, 245 meningiomas in 229 patients were treated by a single fraction or multisession radiosurgery (2-5 fractions) or hypofractionated stereotactic radiotherapy (6-15 fractions) using the CyberKnife system (Accuray Inc., Sunnyvale, CA) at the University Hospital of Messina, Italy. Local tumor control was achieved in 200 of 212 patients with World Health Organization (WHO) Grade I meningiomas (94%) at a mean follow-up of 62 months. Symptomatic PTE on MRI was diagnosed in 19 patients (8.3%) causing seizure (n=17, 89%), aggravating headache (n=12, 63%), or focal deficits (n=13, 68%). Four variables were found to be associated with the likelihood of edema development, including tumor volume > 4.5 mL, non-basal tumor location, tight brain/tumor interface, and atypical histology. Nonetheless, when multivariate logistic regression analysis was performed, only tumor volume and brain-tumor interface turned out to be independent predictors of PTE development. Our results suggest that the factor associated with the risk of developing PTE is associated to characteristics of meningioma rather than to the treatment modality used. Accordingly, an appropriate patient selection is the way to achieve safe treatment and long-term disease control

    Stereotactic body radiation therapy and radiofrequency ablation for the treatment of liver metastases: How and when?

    No full text
    Limited liver metastases represent a clinical challenge. Surgical approach is the most frequently reported treatment option, however, some patients are not eligible for surgical interventions. Relatively recent technologic advances have permitted the safe use of ablative techniques employed in the cure of hepatic metastases. Among these, radiofrequency ablation (RFA) and stereotactic body radiotherapy (SBRT) have emerged as valid treatments in a significant proportion of patients with intrahepatic oligometastatic disease. This review offers an up-to-date of current available literature on this issue focusing on the use and outcomes of RFA and SBRT, according to the PICO (Population, Intervention, Comparison and Outcomes) criteria

    Image-Guided Multisession Radiosurgery of Skull Base Meningiomas

    No full text
    Background: The efficacy of single-session stereotactic radiosurgery (sSRS) for the treatment of intracranial meningioma is widely recognized. However, sSRS is not always feasible in cases of large tumors and those lying close to critically radiation-sensitive structures. When surgery is not recommended, multi-session stereotactic radiosurgery (mSRS) can be applied. Even so, the efficacy and best treatment schedule of mSRS are not yet established. The aim of this study is to validate the role of mSRS in the treatment of skull base meningiomas. Methods: A retrospective analysis of patients with skull base meningiomas treated with mSRS (two to five fractions) at the University of Messina, Italy, from 2008 to 2018, was conducted. Results: 156 patients met the inclusion criteria. The median follow-up period was 36.2 ± 29.3 months. Progression-free survival at 2-, 5-, and 10- years was 95%, 90%, and 80.8%, respectively. There were no new visual or motor deficits, nor cranial nerves impairments, excluding trigeminal neuralgia, which was reported by 5.7% of patients. One patient reported carotid occlusion and one developed brain edema. Conclusion: Multisession radiosurgery is an effective approach for skull base meningiomas. The long-term control is comparable to that obtained with conventionally-fractionated radiotherapy, while the toxicity rate is very limited
    corecore