162 research outputs found

    Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition

    Get PDF
    Isometric thermogenesis as applied to human energy expenditure refers to heat production resulting from increased muscle tension. While most physical activities consist of both dynamic and static (isometric) muscle actions, the isometric component is very often essential for the optimal performance of dynamic work given its role in coordinating posture during standing, walking and most physical activities of everyday life. Over the past 75 years, there has been sporadic interest into the relevance of isometric work to thermoregulatory thermogenesis and to adaptive thermogenesis pertaining to body-weight regulation. This has been in relation to (i) a role for skeletal muscle minor tremor or microvibration – nowadays referred to as ‘resting muscle mechanical activity’ – in maintaining body temperature in response to mild cooling; (ii) a role for slowed skeletal muscle isometric contraction–relaxation cycle as a mechanism for energy conservation in response to caloric restriction and weight loss and (iii) a role for spontaneous physical activity (which is contributed importantly by isometric work for posture maintenance and fidgeting behaviours) in adaptive thermogenesis pertaining to weight regulation. This paper reviews the evidence underlying these proposed roles for isometric work in adaptive thermogenesis and highlights the contention that variability in this neglected component of energy expenditure could contribute to human predisposition to obesity

    Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle

    Get PDF
    Impaired overload-induced protein synthesis and growth in aged fast-twitch skeletal muscle may result from diminished responsiveness of signalling intermediates controlling protein translation. Yet, potential age-related signalling decrements have never been examined in direct parallel with impaired overload-induced muscle growth in any model. To this end, we used Western blotting to examine the contents and phosphorylation states of mammalian target of rapamycin (mTOR) and its downstream translational signalling intermediates, 70 kDa ribosomal protein S6 kinase (S6k), ribosomal protein S6 (rpS6), eukaryotic elongation factor 2 (eEF2), and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), in conjunction with impaired growth in 1 week overloaded fast-twitch plantaris muscles (via unilateral gastrocnemius ablation) of old (O; 30 months) versus young adult (YA; 8months) male Fischer344 X Brown Norway rats. The significantly (P less than or equal to 0.05) diminished growth (assessed by total muscle protein content) in overloaded O muscles (5.6±1.7 versus 19.3±2.9% in YA) was accompanied by significant impairments in the phosphorylation states of mTOR (Ser2448), S6k (impaired at the mTOR-specific Thr389 residue but not at Thr421/Ser424), rpS6 (Ser235/236) and 4E-BP1 (gel shift), as well as deficits in total eEF2 accretion. Moreover, in overloaded muscles across both age groups, phospho-S6k at Thr389 (but not at Thr421/Ser424), 4E-BP1 phosphorylation status, and total eEF2 accretion were all positively correlated with percentage muscle hypertrophy, and negatively correlated with the phosphorylation (Thr172) of 5 -AMP-activated protein kinase (AMPK; which inhibits translational signalling and protein synthesis in young muscle at rest). As previously published by ourselves, AMPK was hyperphosphorylated in O versus YA muscles used in the current investigation. The present results provide solid evidence that impaired overload-induced growth in aged fast-twitch muscle may partly result from multiple-level decrements in signalling pathway(s) controlling protein translation, and also provide an initial indication that AMPK hyperactivation with age may potentially lie upstream of these decrements. Originally published Journal of Physiology, Vol. 574, Pt. 1, July 200

    Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema

    Get PDF
    BACKGROUND: Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC), it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. METHODS: We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. RESULTS: In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms). At both the RNA (RT-PCR) and protein (immunocytochemistry) levels, we found a significant decrease in the fastest, MHC isoform (IIb) in emphysema. CONCLUSION: This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans

    Gene Expression Profiling in the Type 1 Diabetes Rat Diaphragm

    Get PDF
    BACKGROUND:Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression. METHODOLOGY/PRINCIPAL FINDINGS:Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least +/-2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change -2.0 to -8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change -2.2 to -3.7) and organogenesis (P = 0.032, n = 7, fold change -2.1 to -3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested. CONCLUSIONS/SIGNIFICANCE:These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism

    Maintenance of the pectoralis muscle during hibernation in the big brown bat, Eptesicus fuscus

    Full text link
    The relationship between pectoralis muscle mass and body mass is examined throughout the annual body mass cycle in Eptesicus fuscus in order to evaluate muscle maintenance during hibernation. E. fuscus undergoes large fluctuations in body mass during the year due to pregnancy, parturition, prehibernation fattening, and hibernation (Table 1). Parallel changes occur in pectoralis muscle mass and total pectoralis protein mass (Table 2). The strong correlation between log pectoralis mass and log body mass (Fig. 3) and the lack of correlation between pectoralis mass and forearm length (Fig. 1, 2) suggest that the seasonal variation in pectoralis muscle mass represents a compensatory response to changing body mass. In active bats this relationship closely resembles the compensatory response predicted by flight theory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47128/1/360_2004_Article_BF00689733.pd

    Efectos del entrenamiento de la musculatura respiratoria sobre el rendimiento.

    Get PDF
    Actualmente, es aceptado por la comunidad científica que el sistema respiratorio puede limitar el ejercicio en personas con enfermedad pulmonar y/o cardiovascular. El objetivo del presente artículo es la revisión de algunos estudios realizados en relación al papel limitante del sistema respiratorio en el rendimiento físico de deportistas. Se realiza una breve descripción técnica de los dispositivos más utilizados para el entrenamiento de la musculatura respiratoria. Finalmente, se presentan los resultados más representativos, obtenidos por diversos investigadores y en distintas poblaciones, relacionados con el entrenamiento de la musculatura respiratoria y sus efectos en el rendimiento físico. Los resultados obtenidos en las distintas investigaciones consultadas sobre el entrenamiento de los músculos respiratorios son dispares, puesto que algunos han mostrado mejoras significativas, mientras otros no han mostrado grandes efectos en el rendimiento. En todos ellos se refleja cómo el sistema respiratorio es un factor limitante del rendimiento físico en deportistas y es preciso plantearse nuevas metodologías, protocolos y planificaciones en el entrenamiento deportivo. El entrenamiento de los músculos respiratorios, tanto mediante dispositivos umbral, de resistencia, o isocapnica, puede provocar mejoras en valores como la presión inspiratoria máxima y mejoras en el rendimiento de algunos deportes; sin embargo, son muy escasos los estudios que han encontrado mejoras en el consumo máximo de oxígeno (VO2max). Las discrepancias entre los estudios analizados pueden estar provocadas por diferencias en las intensidades y duración de los ejercicios utilizados, así como por diferencias en el diseño experimental y el nivel de condición física de los sujetos

    Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise

    Get PDF
    Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation

    Conjunto de viviendas en Pueblo Esther

    Get PDF
    Al proponernos una temática para desarrollar nuestro proyecto, encontramos en el habitar un ejercicio cotidiano. La vivienda como parte de nuestra rutina se presenta como un desafío, no solo como una unidad, sino también en conjuntos, como partes de una resolución real al enfrentamiento de la accesibilidad a la misma
    corecore