703 research outputs found

    Experimental modeling of rifting at craton margins

    Get PDF
    Lithospheric-scale centrifuge models are used to investigate the process of continental rifting at the margins of cratonic areas. Models reproduce extension between a resistant cratonic lithosphere and an adjacent, weaker mobile belt and investigate the influence of the strength contrast between craton and belt and the presence or absence of an intervening weak zone (such as a suture) on the extensional deformation. Model results suggest that regardless of craton and belt strength contrast, the presence of the weak zone strongly localizes deformation, leading to the development of narrow, deep rift valleys corresponding at depth to marked lithospheric thinning. Depending on the pre-rift rheology (in particular depending on the presence of a significant decrease of the brittle-ductile transition depth in the belt domain), the resulting basin can be largely asymmetric, with a major border fault system on the craton side. When the weak zone is absent, deformation is typically more distributed and lithospheric thinning more homogeneous. In these conditions the strength contrast between craton and belt strongly controls deformation: when the contrast is minimal, no major faults form at the craton-belt boundary, and a roughly symmetric deformation affects a wide region inside the strong mobile belt after the initial stages of extension. Conversely, for high strength contrasts, more asymmetric deformation is localized on a major fault system at the craton margin at the beginning of extension; with progressive extension, minor faulting propagates inside the weak belt, widening the deformed zone. Comparison with different natural examples suggests that these results may be important and have relevance for the development of continental rifts at the margins of cratonic areas

    Crystal fields, disorder, and antiferromagnetic short-range order in Yb0.24Sn0.76Ru

    Full text link
    We report extensive measurements on a new compound (Yb0.24Sn0.76)Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L3 x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb3+ is split by the crystalline electric field (CEF) into a {\Gamma}7 doublet ground state and a {\Gamma}8 quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a {\Gamma}6 excited state resides at 32 meV; however, the {\Gamma}8/{\Gamma}6 transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch- Gr\"uneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the {\Gamma}7 ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound

    An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes

    Get PDF
    We obtain an effective parametrization of the bulk electronic structure of InP within the Tight Binding scheme. Using these parameters, we calculate the electronic structure of InP clusters with the size ranging upto 7.5 nm. The calculated variations in the electronic structure as a function of the cluster size is found to be in excellent agreement with experimental results over the entire range of sizes, establishing the effectiveness and transferability of the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at http://sscu.iisc.ernet.in/~sampan/publications.htm

    Magnetic Resonance vs. Intraoral Ultrasonography in the Preoperative Assessment of Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Preoperative assessment is critical to decide the most adequate surgical strategy for oral squamous cell carcinoma (SCC). Magnetic resonance (MR) and intraoral ultrasonography (US) have been reported to be of great value for preoperative estimation of depth of invasion (DOI) and/or tumor thickness (TT). This review aims to analyze the accuracy of MR and intraoral US in determining DOI/TT in oral SCC, by assuming histological evaluation as the reference method. Methods: The procedure was conducted following the modified 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We performed a systematic search of papers on PubMed, Scopus, Web of Science, and Cochrane Library databases until July 31st, 2019. For quantitative synthesis, we included nine studies (487 patients) focused on MR, and 12 (520 patients) focused on intraoral US. The Pearson correlation coefficient (r) between DOI/TT evaluated with MR or intraoral US was assumed as effect size. A meta-analysis (MA) for each study group (MR and US) was performed by using the random-effects models with the DerSimonian\u2013Laird estimator and r-to-z transformation. Results: In the MA for MR studies, a high heterogeneity was found (I2 = 94.84%; Q = 154.915, P < 0.001). No significant risk of bias occurred by evaluating funnel plot asymmetry (P = 0.563). The pooled (overall) r of the MR studies was 0.87 (95% CI from 0.82 to 0.92), whereas the pooled r-to-z transformed was 1.44 (95% CI from 1.02 to 1.85). In the MA for US studies a high heterogeneity was found (I2 = 93.56%; Q = 170.884, P < 0.001). However, no significant risk of bias occurred (P = 0.779). The pooled r of the US studies was 0.96 (95% CI from 0.94 to 0.97), whereas the pooled r-to-z transformed was 1.76 (95% CI from 1.39 to 2.13). These outputs were confirmed in additional MA performed by enrolling only MR (n = 8) and US (n = 11) studies that evaluated TT. Conclusions: MR and intraoral US seem to be promising approaches for preoperative assessment of DOI/TT in oral SCC. Remarkably, a higher pooled r and r-to-z transformed were observed in the intraoral US studies, suggesting that this approach could be more closely related to histopathological findings

    Crystal growth of copper-rich ytterbium compounds: The predicted giant unit cell structures YbCu4.4 and YbCu4.25

    Full text link
    Two new phases YbCu4.4 and YbCu4.25 are found as a result of careful phase diagram investigations. Between the congruent and peritectic formation of YbCu4.5 and YbCu3.5, respectively, the phases YbCu4.4 and YbCu4.25 are formed peritectically at 934(2)degC and 931(3)degC. Crystal growth was realised using a Bridgman technique and single crystalline grains of about 50-100 10^{-6}m were analyzed by electron diffraction and single crystal X-ray diffraction. Due to the only slight differences in both compositions and formation temperatures the growth of larger single crystals of a defined superstructure is challenging. The compounds YbCu4.4 and YbCu4.25 fit in Cerny`s (J. Solid State Chem. 174 (2003) 125) building principle {(RECu5)n(RECu2)} where RE = Yb with n = 4 and 3. YbCu4.4 and YbCu4.25 base on AuBe5/MgCu2-type substructures and contain approximately 4570 and 2780 atoms per unit cell. The new phases close the gap in the series of known copper-rich rare earth compounds for n = 1, 2 (DyCu3.5, DyCu4.0) and n = 5 (YbCu4.5, DyCu4.5)

    Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds

    Full text link
    A systematic analysis of low temperature magnetic phase diagrams of Ce compounds is performed in order to recognize the thermodynamic conditions to be fulfilled by those systems to reach a quantum critical regime and, alternatively, to identify other kinds of low temperature behaviors. Based on specific heat (CmC_m) and entropy (SmS_m) results, three different types of phase diagrams are recognized: i) with the entropy involved into the ordered phase (SMOS_{MO}) decreasing proportionally to the ordering temperature (TMOT_{MO}), ii) those showing a transference of degrees of freedom from the ordered phase to a non-magnetic component, with their Cm(TMO)C_m(T_{MO}) jump (ΔCm\Delta C_m) vanishing at finite temperature, and iii) those ending in a critical point at finite temperature because their ΔCm\Delta C_m do not decrease with TMOT_{MO} producing an entropy accumulation at low temperature. Only those systems belonging to the first case, i.e. with SMO→0S_{MO}\to 0 as TMO→0T_{MO}\to 0, can be regarded as candidates for quantum critical behavior. Their magnetic phase boundaries deviate from the classical negative curvature below T≈2.5T\approx 2.5\,K, denouncing frequent misleading extrapolations down to T=0. Different characteristic concentrations are recognized and analyzed for Ce-ligand alloyed systems. Particularly, a pre-critical region is identified, where the nature of the magnetic transition undergoes significant modifications, with its ∂Cm/∂T\partial C_m/\partial T discontinuity strongly affected by magnetic field and showing an increasing remnant entropy at T→0T\to 0. Physical constraints arising from the third law at T→0T\to 0 are discussed and recognized from experimental results

    Enhancing quality of life in head and neck cancer patients: a comparative analysis of 3D exoscope-assisted surgery vs. traditional approaches

    Get PDF
    IntroductionThe increasing population of survivors of head and neck carcinomas is becoming more conspicuous. Consequently, the pivotal role of quality of life, particularly elucidated through the assessment of dysphagia and dysphonia, is progressively influencing the decision-making process. The current study aims to assess whether VITOM 3D could offer a comparable post-treatment quality of life to traditional approaches for patients with laryngeal cancer and oro-hypopharyngeal cancer.MethodsA case series of laryngeal cancer and oro-hypopharyngeal cancer patients treated either with an exoscopic-assisted surgical setup and with conventional treatments (transoral microsurgery and radio-chemotherapy) at the Otolaryngology Unit of IRCCS San Martino Hospital, Genoa, is presented. The post-treatment quality of life of the two cohorts were compared through the administration of the University of Washington Quality of Life Questionnaire, Voiceik Handicap Index-10, M.D. Anderson Dysphagia Inventory were administrated to both cohorts of patients.ResultsIn the laryngeal cancer group, a total of 79 patients were included. Of these, 50.1% underwent transoral exoscope-assisted surgery, while 49.9% underwent primary transoral microscopic-assisted surgical approach. No significant differences were observed in terms of the University of Washington Quality of Life Questionnaire and Voice Handicap Index-10 between the two subgroups. Conversely, in the oro-hypopharyngeal cancer group, 43 patients were included. Of these, 37.2% underwent primary transoral exoscope-assisted surgery, while 62.8% received (chemo)radiotherapy. No notable differences were reported in terms of the University of Washington Quality of Life Questionnaire and M.D. Anderson Dysphagia Inventory between the transoral exoscope-assisted surgery and (chemo)radiotherapy subgroups.ConclusionsAssessments of quality of life, conducted through the University of Washington Quality of Life Questionnaire questionnaire, dysphonia evaluations using the Voice Handicap Index-10, and dysphagia assessments employing the M.D. Anderson Dysphagia Inventory questionnaire, demonstrate analogous outcomes between conventional treatment modalities and transoral interventions utilizing the 3D exoscope

    The Abdominal Circulatory Pump

    Get PDF
    Blood in the splanchnic vasculature can be transferred to the extremities. We quantified such blood shifts in normal subjects by measuring trunk volume by optoelectronic plethysmography, simultaneously with changes in body volume by whole body plethysmography during contractions of the diaphragm and abdominal muscles. Trunk volume changes with blood shifts, but body volume does not so that the blood volume shifted between trunk and extremities (Vbs) is the difference between changes in trunk and body volume. This is so because both trunk and body volume change identically with breathing and gas expansion or compression. During tidal breathing Vbs was 50–75 ml with an ejection fraction of 4–6% and an output of 750–1500 ml/min. Step increases in abdominal pressure resulted in rapid emptying presumably from the liver with a time constant of 0.61±0.1SE sec. followed by slower flow from non-hepatic viscera. The filling time constant was 0.57±0.09SE sec. Splanchnic emptying shifted up to 650 ml blood. With emptying, the increased hepatic vein flow increases the blood pressure at its entry into the inferior vena cava (IVC) and abolishes the pressure gradient producing flow between the femoral vein and the IVC inducing blood pooling in the legs. The findings are important for exercise because the larger the Vbs the greater the perfusion of locomotor muscles. During asystolic cardiac arrest we calculate that appropriate timing of abdominal compression could produce an output of 6 L/min. so that the abdominal circulatory pump might act as an auxiliary heart
    • …
    corecore