9 research outputs found

    MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERα) in regulation of the MUC1 gene expression

    Get PDF
    BACKGROUND: The MUC1 gene encodes a mucin glycoprotein(s) which is basally expressed in most epithelial cells. In breast adenocarcinoma and a variety of epithelial tumors its transcription is dramatically upregulated. Of particular relevance to breast cancer, steroid hormones also stimulate the expression of the MUC1 gene. The MUC1 gene directs expression of several protein isoforms, which participate in many crucial cell processes. Although the MUC1 gene plays a critical role in cell physiology and pathology, little is known about its promoter organization and transcriptional regulation. The goal of this study was to provide insight into the structure and transcriptional activity of the MUC1 promoter. RESULTS: Using TRANSFAC and TSSG soft-ware programs the transcription factor binding sites of the MUC1 promoter were analyzed and a map of transcription cis-elements was constructed. The effect of different MUC1 promoter regions on MUC1 gene expression was monitored. Different regions of the MUC1 promoter were analyzed for their ability to control expression of specific MUC1 isoforms. Differences in the expression of human MUC1 gene transfected into mouse cells (heterologous artificial system) compared to human cells (homologous natural system) were observed. The role of estrogen on MUC1 isoform expression in human breast cancer cells, MCF-7 and T47D, was also analyzed. It was shown for the first time that synthesis of MUC1/SEC is dependent on estrogen whereas expression of MUC1/TM did not demonstrate such dependence. Moreover, the estrogen receptor alpha, ERα, could bind in vitro estrogen responsive cis-elements, EREs, that are present in the MUC1 promoter. The potential roles of different regions of the MUC1 promoter and ER in regulation of MUC1 gene expression are discussed. CONCLUSION: Analysis of the structure and transcriptional activity of the MUC1 promoter performed in this study helps to better understand the mechanisms controlling transcription of the MUC1 gene. The role of different regions of the MUC1 promoter in expression of the MUC1 isoforms and possible function of ERα in this process has been established. The data obtained in this study may help in development of molecular modalities for controlled regulation of the MUC1 gene thus contributing to progress in breast cancer gene therapy

    Human Endogenous Retrovirus (HERV-K) Reverse Transcriptase as a Breast Cancer Prognostic Marker123

    Get PDF
    A reverse transcriptase (RT) cDNA, designated HERV-K-T47D-RT, was isolated from a hormonally treated human breast cancer cell line. The protein product putative sequence is 97% identical to the human endogenous HERV-K retroviral sequences. Recombinant T47D-RT protein was used to generate polyclonal antibodies. The expression of HERV-K-T47D-RT protein increased in T47D cells after treatment with estrogen and progesterone. The RT-associated DNA polymerase activity was substantially increased after over-expressing a chimeric YFP-HERV-K-T47D-RT protein in cells. This RT-associated polymerase activity was significantly reduced by mutating the active site sequence YIDD to SIAA. Moreover, the endogenous RT activity observed in T47D cells was decreased by HERV-K-T47D-RT-specific siRNA, confirming the dependence of the endogenous enzymatic activity. To assess HERV-K-T47D-RT expression in human breast tumors, 110 paraffin sections of breast carcinoma biopsies were stained and subjected to confocal analysis. Twenty-six percent (28/110) of the tumor tissues and 18% (15/85) of the adjacent normal tissue, from the same patients, expressed the RT. HERV-K-T47D-RT expression significantly correlates with poor prognosis for disease-free patients and their overall survival. These results imply that HERV-K-T47D-RT might be expressed in early malignancy and might serve as a novel prognostic marker for breast cancer. Furthermore, these results provide evidence for the possible involvement of endogenous retrovirus in human breast carcinoma

    A unique mucin immunoenhancing peptide with antitumor properties

    No full text
    Implantation of DA-3 mammary tumor cells into BALB/c mice results in tumor growth, metastatic lesions, and death. These cells were transfected with genes encoding for either the transmembrane (DA-3/TM) or secreted (DA-3/sec) form of human mucin 1 (MUC1). Although the gene for the secreted form lacks the transmembrane and cytoplasmic domains, the 5' sequences of these mucins are identical; however, the gene for the secreted mucin isoform ends with a sequence encoding for a unique 11 amino acid peptide. The DA-3/TM or DA-3 cells transfected with the neomycin vector only (DA-3/neo) have the same in vivo growth characteristics as the parent cell line. In contrast, DA-3/sec cells fail to grow when implanted in immunocompetent BALB/c animals. DA-3/sec cells implanted in nude mice resulted in tumor development verifying the tumorigenic potential of these cells. Pre-exposure of BALB/c mice to DA-3/sec cells afforded protection against challenge with DA-3/TM or DA-3/neo mammary tumors and the unrelated tumors K7, an osteosarcoma, and RENCA, a renal cell carcinoma. Partial protection against subsequent tumor challenges was also achieved by substituting the 11 amino acid peptide found only in the secreted MUC1 isoform, for the live DA-3/sec cells. Notably, the efficacy of this peptide is not strain restricted because it also retarded the growth of Lewis lung carcinoma cells in C57 BL/6 mice. These findings reveal that a unique peptide present in the secreted MUC1 has immunoenhancing properties and may be a potential agent for use in immunotherapy

    Generation of ligand-receptor alliances by "SEA" module-mediated cleavage of membrane-associated mucin proteins

    No full text
    A mechanism is described whereby one and the same gene can encode both a receptor protein as well as its specific ligand. Generation of this receptor–ligand partnership is effected by proteolytic cleavage within a specific module located in a membrane resident protein. It is postulated here that the "SEA" module, found in a number of heavily O-linked glycosylated membrane-associated proteins, serves as a site for proteolytic cleavage. The subunits generated by proteolytic cleavage of the SEA module reassociate, and can subsequently elicit a signaling cascade. We hypothesize that all membrane resident proteins containing such a "SEA" module will undergo cleavage, thereby generating a receptor–ligand alliance. This requires that the protein subunits resulting from the proteolytic cleavage reassociate with each other in a highly specific fashion. The same SEA module that serves as the site for proteolytic cleavage, probably also contains the binding sites for reassociation of the resultant two subunits. More than one type of module can function as a site for proteolytic cleavage; this can occur not only in one-pass membrane proteins but also in 7-transmembrane proteins and other membrane-associated proteins. The proposal presented here is likely to have significant practical consequences. It could well lead to the rational design and identification of molecules that, by binding to one of the cleaved partners, will act either as agonists or antagonists, alter signal transduction and, hence, cellular behavior
    corecore