67 research outputs found

    Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion

    Full text link
    In this work, an extension to the standard iterative Boltzmann inversion (IBI) method to derive coarse-grained potentials is proposed. It is shown that the inclusion of target data from multiple states yields a less state-dependent potential, and is thus better suited to simulate systems over a range of thermodynamic states than the standard IBI method. The inclusion of target data from multiple states forces the algorithm to sample regions of potential phase space that match the radial distribution function at multiple state points, thus producing a derived potential that is more representative of the underlying potential interactions. It is shown that the algorithm is able to converge to the true potential for a system where the underlying potential is known. It is also shown that potentials derived via the proposed method better predict the behavior of n-alkane chains than those derived via the standard method. Additionally, through the examination of alkane monolayers, it is shown that the relative weight given to each state in the fitting procedure can impact bulk system properties, allowing the potentials to be further tuned in order to match the properties of reference atomistic and/or experimental systems

    Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase

    Full text link
    We present results of molecular simulations that predict the phases formed by the self-assembly of model nanospheres functionalized with a single polymer "tether", including double gyroid, perforated lamella and crystalline bilayer phases. We show that microphase separation of the immiscible tethers and nanospheres causes confinement of the nanoparticles, which promotes local icosahedral packing that stabilizes the gyroid and perforated lamella phases. We present a new metric for determining the local arrangement of particles based on spherical harmonic "fingerprints", which we use to quantify the extent of icosahedral ordering.Comment: 8 pages, 4 figure

    Hydrodynamics and microphase ordering in block copolymers: Are hydrodynamics required for ordered phases with periodicity in more than one dimension?

    Full text link
    We use Brownian dynamics (BD), molecular dynamics, and dissipative particle dynamics to study the phase behavior of diblock copolymer melts and to determine if hydrodynamics is required in the formation of phases with greater than one-dimensional periodicity. We present a phase diagram for diblock copolymers predicted by BD and provide a relationship between the inverse dimensionless temperature ϵ/kBTϵ/kBT and the Flory–Huggins χ parameter, allowing for a quantitative comparison between methods and to mean field predictions. Our results concerning phase behavior are in good qualitative agreement with the theoretical predictions of Matsen and Bates [M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996)]; however, fluctuation effects arising from finite polymer lengths substantially alter the phase boundaries. Our results pertaining to the hydrodynamics are in contrast to earlier work by Groot et al. [R. D. Groot, T. J. Madden, and D. J. Tildesley, J. Chem. Phys. 110, 9739 (1999); D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, New York, 2001)]. In particular, we obtain the hexagonal ordered cylinder phase with BD, a method that does not include hydrodynamics. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69378/2/JCPSA6-121-22-11455-1.pd

    Formalizing Atom-typing and the Dissemination of Force Fields with Foyer

    Full text link
    A key component to enhancing reproducibility in the molecular simulation community is reducing ambiguity in the parameterization of molecular models. Ambiguity in molecular models often stems from the dissemination of molecular force fields in a format that is not directly usable or is ambiguously documented via a non-machine readable mechanism. Specifically, the lack of a general tool for performing automated atom-typing under the rules of a particular force field facilitates errors in model parameterization that may go unnoticed if other researchers are unable reproduce this process. Here, we present Foyer, a Python tool that enables users to define force field atom-typing rules in a format that is both machine- and human-readable thus eliminating ambiguity in atom-typing and additionally providing a framework for force field dissemination. Foyer defines force fields in an XML format, where SMARTS strings are used to define the chemical context of a particular atom type. Herein we describe the underlying methodology of the Foyer package, highlighting its advantages over typical atom-typing approaches and demonstrate is application in several use-cases.Comment: 39 Page, 4 Figures, 8 Listing

    Perfluoropolyethers: Development of an All-Atom Force Field for Molecular Simulations and Validation with New Experimental Vapor Pressures and Liquid Densities

    Get PDF
    A force field for perfluoropolyethers (PFPEs) based on the general optimized potentials for liquid simulations all-atom (OPLS-AA) force field has been derived in conjunction with experiments and ab initio quantum mechanical calculations. Vapor pressures and densities of two liquid PFPEs, perfluorodiglyme (CF3−O−(CF2−CF2−O)2−CF3) and perfluorotriglyme (CF3−O−(CF2−CF2−O)3−CF3), have been measured experimentally to validate the force field and increase our understanding of the physical properties of PFPEs. Force field parameters build upon those for related molecules (e.g., ethers and perfluoroalkanes) in the OPLS-AA force field, with new parameters introduced for interactions specific to PFPEs. Molecular dynamics simulations using the new force field demonstrate excellent agreement with ab initio calculations at the RHF/6-31G* level for gas-phase torsional energies (<0.5 kcal mol−1 error) and molecular structures for several PFPEs, and also accurately reproduce experimentally determined densities (<0.02 g cm−3 error) and enthalpies of vaporization derived from experimental vapor pressures (<0.3 kcal mol−1). Additional comparisons between experiment and simulation show that polyethers demonstrate a significant decrease in enthalpy of vaporization upon fluorination unlike related molecules (e.g., alkanes and alcohols). Simulation suggests this phenomenon is a result of reduced cohesion in liquid PFPEs due to a reduction in localized associations between backbone oxygen atoms and neighboring molecules
    • …
    corecore