14 research outputs found
A Preliminary 1D-3D Analysis of the Darmstadt Research Engine under Motored Condition
In the present paper, 1D and 3D CFD models of the Darmstadt research engine undergo a preliminary validation against the available experimental dataset at motored condition. The Darmstadt engine is a single-cylinder optical research unit and the chosen operating point is characterized by a revving speed equal to 800 rpm with intake temperature and pressure of 24 \ub0C and 0.95 bar, respectively. Experimental data are available from the TU Darmstadt engine research group. Several aspects of the engine are analyzed, such as crevice modeling, blow-by, heat transfer and compression ratio, with the aim to minimize numerical uncertainties. On the one hand, a GT-Power model of the engine is used to investigate the impact of blow-by and crevices modeling during compression and expansion strokes. Moreover, it provides boundary conditions for the following 3D CFD simulations. On the other hand, the latter, carried out in a RANS framework with both highand low-Reynolds wall treatments, allow a deeper investigation of the boundary layer phenomena and, thus, of the gas-to-wall heat transfer. A detailed modeling of the crevice, along with an ad hoc tuning of both blow-by and heat fluxes lead to a remarkable improvement of the results. However, in order to adequately match the experimental mean in-cylinder pressure, a slight modification of the compression ratio from the nominal value is accounted for, based on the uncertainty which usually characterizes such geometrical parameter. The present preliminary study aims at providing reliable numerical setups for 1D and 3D models to be adopted in future detailed investigations on the Darmstadt research engine
An integrated 2D/3D numerical methodology to predict the thermal field of electric motors
The present work aims at providing a predictive numerical methodology for the thermal characterization of electric motors. The methodology relies on a 2D -FE simulation for the estimation of the electromagnetic (iron and joule) losses. The latter are then exploited in a 3D-CFD Conjugate Heat Transfer analysis for the evaluation of the thermal field. The CFD model includes both the solid components and the fluid domains. The main novelty of the paper is represented by the copper coil modelling. In fact, copper, air, epoxy resin and enamel are synthetized in a single homogeneous body able to reproduce the thermal behaviour without including the single components, to reduce the computational cost. The methodology is validated against experimental data on a three-phase squirrel-cage induction motor. As for the experimental data (available at three different operating conditions), temperature distributions are measured by thermocouples at the test bench for the validation of the 3D-CFD CHT model. In addition, experimental estimations of the losses are available for the validation of the 2D electromagnetic simulations. The numerical results in terms of motor performance, electromagnetic losses and thermal field are discussed and are proved to be close to the experimental counterparts, for all the investigated conditions
Development of gasoline-ethanol blends laminar flame speed correlations at full-load Si engine conditions via 1D simulations
Nowadays, most of the engineering development in the field of Spark-Ignited (SI) Internal Combustion Engines (ICEs) is supported by 3D-CFD simulations relying on flamelet combustion models. Such kind of models require laminar flame speed as an input to be specified by the user. While several laminar flame speed correlations are available in literature, for gasoline and pure ethanol at ambient conditions, there is a lack of correlations describing laminar flame speed of gasoline-ethanol blends, for different ethanol volume content, at conditions deemed to be representative of engine-like conditions. Toluene Reference Fuel surrogates with addition of ethanol (ETRF), suitable for representing gasoline-ethanol blends up to 85% vol. ethanol content are formulated. Thanks to these surrogates, 1D premixed laminar flame speed calculations are performed at selected engine-relevant conditions for a E5, E20 and E85 fuels. As a final outcome, three different laminar flame speed correlations based on the chemistry-based calculations are derived for E5, E20 and E85 gasoline-ethanol fuel blends focusing on typical full-load engine conditions. Such kind of correlations can be easily implemented in any 3D-CFD code to provide a chemistry-grounded estimation of laminar flame speed during combustion calculations. Such correlations are of practical use, since they might help in developing the next generation of bio-fuels powered internal combustion engines
Large-Eddy simulation of lean and ultra-lean combustion using advanced ignition modelling in a transparent combustion chamber engine
The need for Internal Combustion Engines (ICEs) to face near-future challenges of higher efficiency and reduced emissions is leading to a renewed interest towards lean-combustion. Several operational issues are associated to lean combustion, such as an abrupt increase of combustion cycle-by-cycle variability (CCV), leading to unbearable levels of Indicated Mean Effective Pressure (IMEP) variation and to misfiring cycles. Significant potential in the wide-scale establishment of lean combustion might come from Large Eddy Simulation (LES), which is able to elucidate the relationships between local physical processes (e.g. velocity magnitude, Air to Fuel Ratio (AFR), etc.) and early combustion progress (e.g. 1%) in unprecedented manners. To this aim, an improved ignition model for LES is proposed in the paper. Two premixed propane-air lean strategies are selected from the wide TCC-III database. A lean-stable (λ=1.10, also named lean) and lean-unstable (λ=1.43, also named ultra-lean) conditions are simulated, highlighting the model capability to well reproduce the sudden rise in CCV for increased mixture dilution. Explanations are given for the observed behaviour and a hierarchical quest for CCV dominant factors is presented. Finally, the different role of local flow field is highlighted for the two cases, and the comparison of optical acquisitions of OH* emission against simulated flame iso-surface up to 1% burn duration reinforce the simulation fidelity. The study shows the investigation possibilities of innovative combustion strategies given by advanced LES simulations. The understanding of turbulent combustion dynamics and the knowledge of the related lean-burn instabilities are key enabler for the exploration of new efficient lean-burn operations
Cold-Flow Investigation of the Darmstadt Engine with Focus on Statistical Convergence: Experimental and Large Eddy Simulation Analysis
The paper analyses particle image velocimetry (PIV) measurements and multi-cycle Large Eddy Simulation (LES) of the in-cylinder flow of the well-known Darmstadt engine, operated in motored condition. This engine is representative of currently made four-valve pent-roof GDI production engines. The so-called operating-point A (OP. A) is investigated hereafter, with focus being made on statistical convergence and relevance of the two datasets. A comparison between the available experimental dataset and author-designed subsets is made using both qualitative observation of the flow fields and quantitative estimates through comparative indices. Besides well-established indices, a new index is introduced, based on the statistical relevance of the k-th experimental ensemble average velocity vector; it is applied to evaluate the influence of the population of cycles on the representation of flow patterns. Simulated fields are then compared to the experimental counterparts using the previously mentioned comparative indices and Proper Orthogonal Decomposition. In particular, POD is employed to characterize the Cycle-to-Cycle Variability (CCV) of the analysed operation and its possible causes. The comparison between experimental flow fields and simulated ones provides an insight of both strengths and weaknesses of the adopted modelling approach
Combustion modelling of turbulent jet ignition in a divided combustion chamber
Turbulent jet ignition is seen as one of the most promising strategies to achieve stable lean-burn operation in modern spark-ignition engines thanks to its ability to promote rapid combustion. A nearly stoichiometric mixture is ignited in a small-volume pre-chamber, following which multiple hot turbulent jets are discharged in the main chamber to initiate combustion. In the present work, a detailed computational investigation on the turbulent combustion regime of premixed rich propane/air mixture in a quiescent divided chamber vessel is carried out, to study the characteristics of the jet flame without the uncertainties in mixing and turbulent conditions typical of real-engine operations. In particular, the paper investigates the dependency of flame propagation on nozzle diameter (4, 6, 8, 12 and 14 mm) and pre-chamber/main-chamber volume ratio (10% and 20%); CFD results are compared to the experimental outcomes. Results show that the combustion regime in the quiescent pre-chamber follows a well-stirred reaction mode, rendering the limitation in using conventional flamelet combustion models. Furthermore, due to the very high turbulence levels generated by the outflowing reacting jets, also the main chamber combustion develops in a well-stirred reactor type, confirming the need for a kinetics-based approach to combustion modelling. However, the picture is complicated by thickened flamelet conditions possibly being verified for some geometrical variations (nozzle diameter and pre-chamber volume). The results show a general good alignment with the experimental data in terms of both jet phasing and combustion duration, offering a renewed guideline for combustion simulations under quiescent and low Damköhler number conditions
Comparison between Experimental and Simulated Knock Statistics Using an Advanced Fuel Surrogate Model
The statistical tendency of a GDI spark-ignition engine to undergo knocking combustion as a consequence of spark timing variation is numerically investigated. In particular, attention is focused on the importance to match combustion-relevant and knock-relevant fuel properties to ensure consistency with the experimental evidence. An inhouse surrogate formulation methodology is used to emulate real gasoline properties, comparing fuel models of increasing complexity. Knock is investigated using a proprietary statistical knock model (GruMo Knock Model, GK-PDF). The model can infer a log-normal distribution of knock intensity within a RANS formalism, by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. The calculated distributions are compared to measured statistical distributions. The proposed numerical/experimental comparison constitutes an advancement in synthetic chemistry integration into 3D-CFD combustion simulations
Validation of a les Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel
The establishment of highly-diluted combustion strategies is one of the major challenges that the next generation of sustainable internal combustion engines must face. The desirable use of high EGR rates and of lean mixtures clashes with the tolerable combustion stability. To this aim, the development of numerical models able to reproduce the degree of combustion variability is crucial to allow the virtual exploration and optimization of a wide number of innovative combustion strategies. In this study ignition experiments using a conventional coil system are carried out in a closed volume combustion vessel with side-oriented flow generated by a speed-controlled fan. Acquisitions for four combinations of premixed propane/air mixture quality (\u3c6=0.9,1.2), dilution rate (20%-30%) and lateral flow velocity (1-5 m/s) are used to assess the modelling capabilities of a newly developed spark-ignition model for large-eddy simulation (GLIM, GruMo-UniMORE LES Ignition Model). The model accounts for all the main physical phenomena governing flame kernel growth, including electric circuit and over-adiabatic thermal expansion, which are included in the LES formalism of ECFM-LES combustion model. In the first part of the study the agreement of the simulation results against measurements is carried out to assess a validated non-reacting condition and converged flow statistics. Then, combustion simulations are carried out, and ignition events are repeated at random timings to replicate flow variability at ignition. Finally, optical comparison is carried out for simulated enflamed volume against high-frequency Schlieren images for all the cases, and measurements of flame radius growth are presented. The agreement of the quantitative flame measurements, as well as the qualitative resemblance of flame development, indicate the use of the presented GLIM ignition model as a valuable model for multi-cycle engine simulations, with particular relevance on unstable and CCV-affected condition
Combustion modelling of turbulent jet ignition in a divided combustion chamber
Turbulent jet ignition is seen as one of the most promising strategies to achieve stable lean-burn operation in modern spark-ignition engines thanks to its ability to promote rapid combustion. A nearly stoichiometric mixture is ignited in a small-volume pre-chamber, following which multiple hot turbulent jets are discharged in the main chamber to initiate combustion. In the present work, a detailed computational investigation on the turbulent combustion regime of premixed rich propane/air mixture in a quiescent divided chamber vessel is carried out, to study the characteristics of the jet flame without the uncertainties in mixing and turbulent conditions typical of real-engine operations. In particular, the paper investigates the dependency of flame propagation on nozzle diameter (4, 6, 8, 12 and 14 mm) and pre-chamber/main-chamber volume ratio (10% and 20%); CFD results are compared to the experimental outcomes. Results show that the combustion regime in the quiescent pre-chamber follows a well-stirred reaction mode, rendering the limitation in using conventional flamelet combustion models. Furthermore, due to the very high turbulence levels generated by the outflowing reacting jets, also the main chamber combustion develops in a well-stirred reactor type, confirming the need for a kinetics-based approach to combustion modelling. However, the picture is complicated by thickened flamelet conditions possibly being verified for some geometrical variations (nozzle diameter and pre-chamber volume). The results show a general good alignment with the experimental data in terms of both jet phasing and combustion duration, offering a renewed guideline for combustion simulations under quiescent and low Damk\uf6hler number conditions