282 research outputs found

    Aiding eco-labelling process and its implementation: environmental impact assessment methodology to define product category rules for canned anchovies

    Get PDF
    To be able to fulfil high market expectations for a number of practical applications, Environmental Product Declarations (EPDs) have to meet and comply with specific and strict methodological prerequisites. These expectations include the possibility to add up Life Cycle Assessment (LCA)-based information in the supply chain and to compare different EPDs. To achieve this goal, common and harmonized calculation rules have to be established, the so-called Product Category Rules (PCRs), which set the overall LCA calculation rules to create EPDs. This document provides PCRs for the assessment of the environmental performance of canned anchovies in Cantabria Region based on an Environmental Sustainability Assessment (ESA) method. This method uses two main variables: the natural resources sustainability (NRS) and the environmental burdens sustainability (EBS). To reduce the complexity of ESA and facilitate the decision-making process, all variables are normalized and weighted to obtain two global dimensionless indexes: resource consumption (X1) and environmental burdens (X2). ‱ This paper sets the PCRs adapted to the Cantabrian canned anchovies.‱ ESA method facilitates the product comparison and the decision-making process.‱ This paper stablishes all the steps that an EPD should include within the PCRs of Cantabrian canned anchovies.Authors thank to Ministry of Economy and Competitiveness of Spanish Government for the ïŹnancial support through the project called GeSAC-Conserva: Sustainable Management of the Cantabrian Anchovies (CTM2013-43539-R). Jara Laso also thanks to the Ministry of Economy and Competitiveness of Spanish Government for the ïŹnancial support through the research fellowship BES-2014-069368. MethodsX thanks the reviewers of this article for taking the time to provide valuable feedback

    Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study

    Get PDF
    In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Lowinput species such as Jatropha curcas, a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production inWest Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development

    Comparative Life Cycle Assessment of Packaging Systems for Extended Shelf Life Milk

    Get PDF
    The aim of this study is to carry out a comparative analysis of the environmental impact of different packaging systems used for extended shelf life milk. The analysis, carried out exploiting the life cycle assessment approach, takes into account the packaging manufacturing process, the food packaging process, the transport phases and the end-of-life management of the different packaging systems. The packaging end of-life is modelled by considering three possible options, such as recycling, thermo-valorization with energy recovery and landfill. One litre of extended shelf life milk is used as the reference unit, while multilayer cartons, polyethylene terephthalate bottles labelled with shrink sleeve film and high-density polyethylene bottles are analysed as the packaging types. The key characteristics of each component of the three packaging systems were either provided by packaging manufacturers or derived from data available in literature. The evaluation of the end-of-life impact was performed considering the Italian scenario, exploiting, in particular, the data provided by specific Italian consortia. Other data for the inventory analysis phase were extrapolated from the SimaPro databases (e.g. Ecoinvent or Plastic Europe Database). Cumulative energy demand and CML2001 were adopted as the impact assessment methods. The results obtained show that the multilayer carton system is the less environmentally impactful option for almost all the considered impact categories and that its environmental impacts are, on average, more than 12% lower than high-density polyethylene system and more than 34% lower than polyethylene terephthalate with shrink sleeve label

    Assessing the life cycle environmental impacts of titania nanoparticle production by continuous flow solvo/hydrothermal synthesis

    Get PDF
    Continuous-flow hydrothermal and solvothermal syntheses offer substantial advantages over conventional processes, producing high quality materials from a wide range of precursors. In this study, we evaluate the “cradle-to-gate” life cycle environmental impacts of alternative titanium dioxide (TiO₂) nanoparticle production parameters, considering a range of operational conditions, precursors, material properties and production capacities. A detailed characterisation of the nano-TiO₂ products allows us, for the first time, to link key nanoparticle characteristics to production parameters and environmental impacts, providing a useful foundation for future studies evaluating nano-TiO₂ applications. Five different titanium precursors are considered, ranging from simple inorganic precursors, like titanium oxysulphate (TiOS), to complex organic precursors such as titanium bis(ammonium-lactato)dihydroxide (TiBALD). Synthesis at the laboratory scale is used to determine the yield, size distribution, crystallinity and phase of the nanoparticles. The specifications and operating experience of a full scale plant (>1000 t per year) are used to estimate the mass and energy inputs of industrial scale production for the life cycle assessment. Overall, higher process temperatures are linked to larger, more crystalline nanoparticles and higher conversion rates. Precursor selection also influences nano-TiO₂ properties: production from TiOS results in the largest particle sizes, while TiBALD achieves the smallest particles and narrowest size distribution. Precursor selection is the main factor in determining cradle-to-gate environmental impacts (>80% in some cases), due to the production impact of complex organic precursors. Nano-TiO2 production from TiOS shows the lowest global warming potential (GWP) (<12 kg CO₂-eq. per kg TiO₂) and cumulative energy demand (CED) (<149 MJ kgÂŻÂč TiO₂) due to the low environmental impact of the precursor, the use of water as a solvent and its high yield even at lower temperatures. Conversely, the TiBALD precursor shows the highest impact (86 kg CO₂-eq. per kg TiO₂ and 1952 MJ kgÂŻÂč TiO₂) due to the need for additional post-synthesis steps and complexity of precursor manufacturing. The main purpose of this study is not a direct comparison of the environmental impacts of TiO₂ nanoparticles manufactured utilizing various precursors under different conditions, but to provide an essential foundation for future work evaluating potential applications of nano-TiO₂ and their life cycle environmental impacts

    Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol

    Get PDF
    This paper examines impacts of regional factors affecting biomass and process input supply chains and ongoing technology development on the life cycle greenhouse gas (GHG) emissions of ethanol production from corn stover in the U.S. Corn stover supply results in GHG emissions from -6 gCO2eq./MJ ethanol (Macon County, Missouri) to 13 gCO2eq./MJ ethanol (Hardin County, Iowa), reflecting location-specific soil carbon and N2O emissions responses to stover removal. Biorefinery emissions based on the 2011 National Renewable Energy Laboratory (NREL) process model are the single greatest emissions source (18 gCO2eq./MJ ethanol) and are approximately double those assessed for the 2002 NREL design model, due primarily to the inclusion of GHG-intensive inputs (caustic, ammonia, glucose). Energy demands of on-site enzyme production included in the 2011 design contribute to reducing the electricity co-product and associated emissions credit, which is also dependent on the GHG-intensity of regional electricity supply. Life cycle emissions vary between 1.5 and 22 gCO2eq./MJ ethanol (2011 design) depending on production location (98% to 77% reduction vs. gasoline). Using system expansion for co-product allocation, ethanol production in studied locations meet the Energy Independence and Security Act emissions requirements for cellulosic biofuels; however, regional factors and on-going technology developments significantly influence these results

    Biomaterials for Building Skins

    Get PDF
    Bio-based materials are considered a promising resource for buildings in the twenty-first century due to their sustainability and versatility. They can be produced locally, with minimum transportation costs and in an ecological manner. This chapter describes the potential of biomaterials for use in façades. It presents several examples of natural resources, including innovative alternative materials that are suitable for implementation as a building skin. Novel products resulting from material modifications and functionalization are presented, including a brief discussion on their environmental impacts. Alternative strategies for optimal biomaterials' recycling, reuse, and other end-of-life strategies are presented and supported with case study examples

    Comparative LCA of concrete with recycled aggregates: a circular economy mindset in Europe

    Full text link
    [EN] Purpose Construction and demolition waste (C&DW) is the largest waste stream in the European Union (EU) and all over the world. Proper management of C&DW and recycled materialsÂżincluding the correct handling of hazardous wasteÂżcan have major benefits in terms of sustainability and the quality of life. The Waste Framework Directive 2008/98/EC aims to have 70% of C&DW recycled by 2020. However, except for a few EU countries, only about 50% of C&DW is currently being recycled. In the present research, the environmental impact of concrete with recycled aggregates and with geopolymer mixtures is analysed. The aim of the present research is to propose a comparative LCA of concrete with recycled aggregates in the context of European politics. Methods Life cycle assessment (LCA) methodology is applied using Simapro© software. A cradle to grave analysis is carried out. The results are analysed based on the database Ecoinvent 3.3 and Impact 2002+. Results Results show that the concrete with 25% recycled aggregates is the best solution from an environmental point of view. Furthermore, geopolymer mixtures could be a valid alternative to reduce the phenomenon of Âżglobal warmingÂż; however, the production of sodium silicate and sodium hydroxide has a great environmental impact. Conclusions A possible future implementation of the present study is certainly to carry out an overall assessment and to determine the most cost-effective option among the different competing alternatives through the life cycle cost analysis.Colangelo, F.; GĂłmez-Navarro, T.; Farina, I.; Petrillo, A. (2020). Comparative LCA of concrete with recycled aggregates: a circular economy mindset in Europe. International Journal of Life Cycle Assessment. 25(9):1790-1804. https://doi.org/10.1007/s11367-020-01798-6S17901804259Akhtar A, Sarmah (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J Cleaner Prod 186:262–281Bare JC, Hofstetter P, Penningtonne DW, Helias A, de Haes U (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5(6):319–326Blengini GA, Garbarino E (2010) Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix. J Clean Prod 18(10–11):1021–1030Blengini GA, Garbarino E, Ć olar S, Shields DJ, HĂĄmor T, Vinai R, Agioutantis Z (2012) Life cycle assessment guidelines for the sustainable production and recycling of aggregates: the sustainable aggregates resource management project (SARMa). J Clean Prod 27:177–181Blengini GA, Garbarino E, Bevilacqua P (2017) Sustainability and integration between mineral resources and C&DW management: overview of key issues towards a resource-efficient Europe. Env Eng Man J 16(2):493–502Borghi G, Pantini S, Rigamonti L (2018) Life cycle assessment of non-hazardous construction and demolition waste (CDW) management in Lombardy region (Italy). J Clean Prod 184:815–825Braga AM, Silvestre JD, de Brito J (2017) Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J Clean Prod 162:529–543Chen C, Habert G, Bouzidi Y, Jullien A, Ventura A (2010) LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Res Con Rec 54(12):1231–1240Chen Z, Gu H, Bergman RD, Liang S (2020) Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the Athena impact estimator for buildings. Sustainability (Switzerland) 12(11):4708Colangelo F, Cioffi R (2017) Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy. Comp Part B: Eng 115:43–50Colangelo F, Petrillo A, Cioffi R, Borrelli C, Forcina A (2018a) Life cycle assessment of recycled concretes: a case study in southern Italy. Sci Total Env 615:1506–1517Colangelo F, Forcina A, Farina I, Petrillo A (2018b) Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings 8(5):70Colangelo F, Navarro TG, Petrillo A, Farina I, Cioffi R (2020) Life-cycle impact of concrete with recycled materials. Encyclopedia of Renewable and Sustainable Materials, Volume 5(2020):414–421COM (2012) 433, COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL Strategy for the sustainable competitiveness of the construction sector and its enterprises, http://eur-lex.europa.eu/procedure/EN/201859, Brussels, 31.7.2012, COM(2012) 433 finalCOM (2014) 445, COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL, http://ec.europa.eu/environment/eussd/pdf/SustainableBuildingsCommunication.pdf, Brussels, 1.7.2014 COM(2014) 445 finalDavidovits J (2018) Geopolymers based on natural and synthetic metakaolin a critical review. Ceramic Eng Science Proc 38(3):201–214Di Maria A, Eyckmans J, Van Acker K (2018) Downcycling versus recycling of construction and demolition waste: combining LCA and LCC to support sustainable policy making. Waste Man 75:3–21Directive 2008/98/EC on waste (Waste Framework Directive), http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098EN 1992-1-1:(2004) Eurocode 2: Design of concrete structures - Part 1–1: General rules and rules for buildingsEstanqueiro B, Dinis Silvestre J, de Brito J, Duarte Pinheiro M (2018) Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. Eur J Env Civ Eng 22(4):429–449Etxeberria M, VĂĄzquez E, MarĂ­ A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Conc Res 37(5):735–742EU construction & demolition waste management protocol (2016) BrusselsGĂĄlvez-Martos J-L, Styles D, Schoenberger H, Zeschmar-Lahl B (2018) Construction and demolition waste best management practice in Europe. Res Con Rec 136:166–178Gluth, G.J.G., Arbi, K., Bernal, S.A., Bondar, D., Castel, A., Chithiraputhiran, S., Dehghan, A., Dombrowski-Daube, K., Dubey, A., Ducman, V., Peterson, K., Pipilikaki, P., Valcke, S.L.A., Ye, G., Hajimohammadi, A., van Deventer, J.S.J., 2017. Characterisation of one-part geopolymer binders made from fly ash. Waste Biom Val, 8(1), pp. 225–233Gomes R, Silvestre JD, de Brito J (2020) Environmental, economic and energy life cycle assessment “from cradle to cradle” (3E-C2C) of flat roofs. Journal of Building Engineering 32:101436ISO 14040 (2006) Environmental management life cycle assessment. Principles and Framework. ISO, GenevaISO 14044 (2006) Environmental management. Life cycle assessment. Requirements and Guidelines. ISO, GenevaJafary Nasab T, Monavari SM, Jozi SA, Majedi H (2020) Assessment of carbon footprint in the construction phase of high-rise constructions in Tehran. Int J Environ Sci Technol 17(6):3153–3164Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) Impact 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–333Khan MW, Ali Y, De Felice F, Salman A, Petrillo A (2019) Impact of brick kilns industry on environment and human health in Pakistan. Sci Total Environ 678:383–389Knoeri C, SanyĂ©-Mengual E, Althaus H-J (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918Lu W, Yan H (2011) A framework for understanding waste management studies in construction. Waste Man 31:1252–1260Marinković S, Radonjanin V, MaleĆĄev M, Ignjatović I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Man 30(11):2255–2264Mercante IT, Bovea MD, Ibåñez-ForĂ©s V, Arena AP (2012) Life cycle assessment of construction and demolition waste management systems: a Spanish case study. Int J Life Cycle Assess 17(2):232–241Pantini S, Giurato M, Rigamonti L (2019) A LCA study to investigate resource-efficient strategies for managing post-consumer gypsum waste in Lombardy region (Italy). Res Con Rec 147:157–168Petrillo A, Cioffi R, De Felice F, Colangelo F, Borrelli C (2016) An environmental evaluation: a comparison between geopolymer and OPC concrete paving blocks manufacturing process in Italy. Env Prog Sus Energy 35(6):1699–1708Provis JL (2017) Alkali-activated cementitious materials and concretes - steps towards standardization, American Concrete Inst, ACI Special Publication 2017-January (SP 320), pp. 444-448Sayagh S, Ventura A, Hoang T, François D (2010) Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Res cons rec 54(6):348–358Tangtinthai N, Heidrich O, Manning DAC (2019) Role of policy in managing mined resources for construction in Europe and emerging economies. J Env Man 236:613–621ToĆĄić N, Marinković S, DaĆĄić T, Stanić M (2015) Multicriteria optimization of natural and recycled aggregate concrete for structural use. J Clean Prod 87(1):766–776Van den Heede P, De Belie N (2012) Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cem Conc Comp 34(4):431–442Vossberg C, Mason-Jones K, Cohen B (2014) An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa. Res Con Rec 88:39–49Walling SA, Notman S, Watts P, Govan N, Provis JL (2019) Portland cement based immobilization/destruction of chemical weapon agent degradation products. Industrial Eng Chemistry Res 58(24):10383–10393Wu H, Zuo J, Yuan H, Zillante G, Wang J (2019) A review of performance assessment methods for construction and demolition waste management. Res Cons Recycling 150:104407Zhang C, Hu M, Dong L, Gebremariam A, Mirand-Xicotencatl B, Di Maio F, Tukker A (2019) Eco-efficiency assessment of technological innovations in high-grade concrete recycling. Res Cons Recycling 149:649–66

    Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources

    Get PDF
    Building-Integrated Photovoltaic/Thermal (BIPVT) technology offers multiple advantages; however, these types of installations include materials such as Photovoltaic (PV) cells and metals which considerably influence BIPVT environmental impact. Therefore, there is a need to evaluate BIPVT environmental profile, for instance by means of Life Cycle Assessment (LCA). In light of the issues mentioned above, the present article is an LCA study that assesses the environmental performance of a BIPVT prototype that has been developed and patented at the Ulster University (Belfast, UK). The investigation places emphasis on material manufacturing, based on Cumulative Energy Demand (CED), Global Warming Potential (GWP), ReCiPe, Ecological footprint and USEtox. The results show that according to all the adopted methods/environmental indicators and based on primary materials, the PV cells and the two vessels (steel) are the components with the three highest impacts. Scenarios which include recycling of steel, plastics and brass (landfill for the other materials has been assumed), based on CED, GWP 100a and ReCiPe endpoint, have been examined. It was found that steel recycling offers a considerable impact reduction, ranging from 47% to 85%. Furthermore, the impact of the proposed BIPVT module per m2 of thermal absorber has been calculated. The results, based on primary materials, show 4.92 GJprim/m2 and 0.34 t CO2.eq/m2 (GWP 100a). In addition, according to USEtox/ecotoxicity, USEtox/human toxicity-non-cancer (scenario based on primary materials), the PV cells present the highest contributions to the total impact of the module: 55% in terms of ecotoxicity and 86% concerning human toxicity/non-cancer. A comparison with literature is provided. Moreover, a separate section of the article is about factors which influence BIPVT environmental profile, discussing parameters such as the storage materials and the end-of-life management.The authors would like to thank “Ministerio de Economía y Competitividad” of Spain for the funding (grant reference ENE2016-81040-R)
    • 

    corecore