4,993 research outputs found

    Implications of "peak oil" for atmospheric CO2 and climate

    Full text link
    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration, and recent trends are toward lower estimates, we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before mid-century to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 beneath the 450 ppm ceiling.Comment: (22 pages, 7 figures; final version accepted by Global Biogeochemical Cycles

    Could a potential Anthropocene mass extinction define a new geological period?

    Get PDF
    A key aspect of the current debate about the Anthropocene focuses on defining a new geological epoch. Features of the Anthropocene include a biodiversity crisis with the potential to reach ‘mass extinction’ status alongside increasing global CO₂ and temperature. Previous geological boundaries associated with mass extinctions, rises in atmospheric CO₂ and rises in global temperature are more usually associated with transitions between geological periods. The current rapid increase in species extinctions suggest that a new mass extinction event is most likely imminent in the near-term future. Although CO₂ levels are currently low in comparison with the rest of the Phanerozoic, they are rising rapidly along with global temperatures. This suggests that defining the Anthropocene as a new geological period, rather than a new epoch, may be more consistent with previous geological boundaries in the Phanerozoic

    BusTr: Predicting Bus Travel Times from Real-Time Traffic

    Full text link
    We present BusTr, a machine-learned model for translating road traffic forecasts into predictions of bus delays, used by Google Maps to serve the majority of the world's public transit systems where no official real-time bus tracking is provided. We demonstrate that our neural sequence model improves over DeepTTE, the state-of-the-art baseline, both in performance (-30% MAPE) and training stability. We also demonstrate significant generalization gains over simpler models, evaluated on longitudinal data to cope with a constantly evolving world.Comment: 14 pages, 2 figures, 5 tables. Citation: "Richard Barnes, Senaka Buthpitiya, James Cook, Alex Fabrikant, Andrew Tomkins, Fangzhou Xu (2020). BusTr: Predicting Bus Travel Times from Real-Time Traffic. 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. doi: 10.1145/3394486.3403376

    How will SOA change in the future?

    Full text link
    Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass is increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.Key PointsIsoprene increases even with CO2 inhibition effectClimate is the major driver for SOA increaseReduced anthropogenic emissions decreases SOAPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136049/1/grl53994_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136049/2/grl53994-sup-0001-supplementary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136049/3/grl53994.pd

    Predicting the distributions of under-recorded Odonata using species distribution models

    Get PDF
    1. Absences in distributional data may result either from the true absence of a species or from a false absence due to lack of recording effort. I use general linear models (GLMs) and species distribution models (SDMs) to investigate this problem in North American Odonata and present a potential solution. 2. I use multi-model selection methods based on Akaike's information criterion to evaluate the ability of water-energy variables, human population density, and recording effort to explain patterns of odonate diversity in the USA and Canada using GLMs. Water-energy variables explain a large proportion of the variance in odonate diversity, but the residuals of these models are significantly related to recorder effort. 3. I then create SDMs for 176species that are found solely in the USA and Canada using model averaging of eight different methods. These give predictions of hypothetical true distributions of each of the 176species based on climate variables, which I compare with observed distributions to identify areas where potential under-recording may occur. 4. Under-recording appears to be highest in northern Canada, Alaska, and Quebec, as well as the interior of the USA. The proportion of predicted species that have been observed is related to recorder effort and population density. Maps for individual species have been made available online () to facilitate recording in the future. 5. This analysis has illustrated a problem with current odonate recording in the form of unbalanced recorder effort. However, the SDM approach also provides the solution, targeting recorder effort in such a way as to maximise returns from limited resources
    • …
    corecore