5 research outputs found

    The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reprogramming resulting in enhanced glycolysis is a phenotypic trait of cancer cells, which is imposed by the tumor microenvironment and is linked to the down-regulation of the catalytic subunit of the mitochondrial H<sup>+</sup>-ATPase (β-F1-ATPase). The <it>bioenergetic signature </it>is a protein ratio (β-F1-ATPase/GAPDH), which provides an estimate of glucose metabolism in tumors and serves as a prognostic indicator for cancer patients. Targeting energetic metabolism could be a viable alternative to conventional anticancer chemotherapies. Herein, we document that the <it>bioenergetic signature </it>of isogenic colon cancer cells provides a gauge to predict the cell-death response to the metabolic inhibitors, 3-bromopyruvate (3BrP) and iodoacetate (IA), and the anti-metabolite, 5-fluorouracil (5-FU).</p> <p>Methods</p> <p>The <it>bioenergetic signature </it>of the cells was determined by western blotting. Aerobic glycolysis was determined from lactate production rates. The cell death was analyzed by fluorescence microscopy and flow cytometry. Cellular ATP concentrations were determined using bioluminiscence. Pearson's correlation coefficient was applied to assess the relationship between the <it>bioenergetic signature </it>and the cell death response. <it>In vivo </it>tumor regression activities of the compounds were assessed using a xenograft mouse model injected with the highly glycolytic HCT116 colocarcinoma cells.</p> <p>Results</p> <p>We demonstrate that the <it>bioenergetic signature </it>of isogenic HCT116 cancer cells inversely correlates with the potential to execute necrosis in response to 3BrP or IA treatment. Conversely, the <it>bioenergetic signature </it>directly correlates with the potential to execute apoptosis in response to 5-FU treatment in the same cells. However, despite the large differences observed in the <it>in vitro </it>cell-death responses associated with 3BrP, IA and 5-FU, the <it>in vivo </it>tumor regression activities of these agents were comparable.</p> <p>Conclusions</p> <p>Overall, we suggest that the determination of the <it>bioenergetic signature </it>of colon carcinomas could provide a tool for predicting the therapeutic response to various chemotherapeutic strategies aimed at combating tumor progression.</p

    Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities

    No full text
    Enhanced biological phosphorus removal (EBPR) communities protect waterways from nutrient pollution and enrich microorganisms capable of assimilating acetate as polyhydroxyalkanoate (PHA) under anaerobic conditions. Accumulibacter, an important uncultured polyphosphate-accumulating organism (PAO) enriched in EBPR, was investigated to determine the central metabolic pathways responsible for producing PHA. Acetate uptake and assimilation to PHA in Accumulibacter was confirmed using fluorescence in situ hybridization (FISH)-microautoradiography and post-FISH chemical staining. Assays performed with enrichments of Accumulibacter using an inhibitor of glyceraldehyde-3-phosphate dehydrogenase inferred anaerobic glycolysis activity. Significant decrease in anaerobic acetate uptake and PHA production rates were observed using inhibitors targeting enzymes within the glyoxylate cycle. Bioinformatic analysis confirmed the presence of genes unique to the glyoxylate cycle (isocitrate lyase and malate synthase) and gene expression analysis of isocitrate lyase demonstrated that the glyoxylate cycle is likely involved in PHA production. Reduced anaerobic acetate uptake and PHA production was observed after inhibition of succinate dehydrogenase and upregulation of a succinate dehydrogenase gene suggested anaerobic activity. Cytochrome b/b6 activity inferred that succinate dehydrogenase activity in the absence of external electron acceptors may be facilitated by a novel cytochrome b/b6 fusion protein complex that pushes electrons uphill to more electronegative electron carriers. Identification of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase genes in Accumulibacter demonstrated the potential for interconversion of C3 intermediates of glycolysis and C4 intermediates of the glyoxylate cycle. Our findings along with previous hypotheses from analysis of microbiome data and metabolic models for PAOs were used to develop a model for anaerobic carbon metabolism in Accumulibacter

    In Vitro Predictive Sensitivity Testing in the Therapeutic Assessment of Breast Cancer

    No full text
    corecore