22 research outputs found

    In vitro assessment of antioxidant, phytochemical and nutritional properties of extracts from the leaves of Ocimum Gratissimum (linn).

    Get PDF
    The antioxidant, phytochemical and nutritional properties of acetone, methanol and aqueous extracts of the leaves of Ocimum gratissimum (Linn) were investigated to evaluate the therapeutic and nutritional potential of the leaves of this plant. The antioxidant of the plant extracts were assessed against 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis-(3- ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferric reducing agent. Total phenolics, flavonoids, flavonols and proanthocyanidins were determined to assess their corresponding effect on the antioxidant activity of this plant. The extracts exhibited DPPH and ABTS.+ radical scavenging activities, which was comparable to butylated hydroxytoluene (BHT). The phytochemical screening revealed the presence of alkaloids, tannins, saponin, steroids, cardiacglycoside, flavonoid, terpenoids and phenol. The proximate analysis confirms that the leaves contain appreciable amount of ash, crude protein, lipids, fibre and carbohydrates. The macro and micro elements and constituents revealed that the leaves contain significant amount of sodium, potassium, calcium, magnesium, iron, zinc, phosphorus, copper, nitrogen, and manganese. This study shows that the leaf can be used as a therapeutic agent and justifies its application in folkloric medicine.Keywords: Ocimum gratissimum, oxidative stress, polyphenolic, proximate composition, therapeutic activit

    Potential environmental, ecological and health effects of soil antibiotics and ARGs

    No full text
    Antibiotics are biologically active compounds and are widely used in humans and animals to prevent or treat microbial diseases. Antibiotic resistance is a direct result of antibiotic use. The occurrence and dissemination of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) are recognized as a major public health concern. The effect of clinically relevant ARGs and ARB that are released from anthropogenic sources, along with the excessive use of antibiotics in both human and veterinary settings, is currently considered to be a serious environmental and ecological hazard. The resistant bacteria in the environment can lead to structural changes in the microbial cell, with potential toxic effects on the balance of natural ecosystems. Soil environment is primary media, declared as recipient/reservoir and source of antimicrobial-resistant bacteria of clinical concern. The antimicrobial resistance genes interacted within these bacterial contaminants can multiply in their hosts, then transfer to other bacterial populations and be subject to further development and progression in the bacterial community. Therefore, antimicrobial-resistant bacteria that occur in the environment represent serious risks for human health
    corecore