37 research outputs found
Performance analysis of cables with attached tuned-inerter-dampers
Cables are structural elements designed to bear tensile forces and experience vibration problems due to their slenderness and low mass. In the field of civil engineering, they are mostly used in bridges where the vibrations are mainly induced by wind, rain, traffic and earthquakes. This paper proposes the use of a tuned-inerter-damper (TID) system, mounted on cables to suppress unwanted vibrations. These are to be attached transversally to the cable, in the vicinity of the support, connected between the deck and the cable. The potential advantage of using a TID system consists in the high apparent mass that can be produced by the inerter. Our analysis showed that the modal damping ratio obtained is much higher than in the case of traditional dampers or tuned mass dampers, leading to an improved overall response. An optimal tuning methodology is also discussed. Numerical results are shown with a cable subjected to both free and forced vibrations and the TID performance is improved when compared with equivalent dampers
Recommended from our members
Shake table testing of a tuned mass damper inerter (Tmdi)-equipped structure and nonlinear dynamic modeling under harmonic excitations
This paper presents preliminary experimental results from a novel shaking table testing campaign investigating the dynamic response of a two-degree-of-freedom (2DOF) physical specimen with a grounded inerter under harmonic base excitation and contributes a nonlinear dynamic model capturing the behavior of the test specimen. The latter consists of a primary mass connected to the ground through a high damping rubber isolator (HDRI) and a secondary mass connected to the primary mass through a second HDRI. Further, a flywheel-based rack-and-pinion inerter prototype device is used to connect the secondary mass to the ground. The resulting specimen resembles the tuned mass damper inerter (TMDI) configuration with grounded inerter analytically defined and numerically assessed by the authors in a number of previous publications. Physical specimens with three different inerter coefficients are tested on the shake table under sine-sweep excitation with three different amplitudes. Experimental frequency response functions (FRFs) are derived manifesting a softening nonlinear behavior of the specimens and enhanced vibration suppression with increased inerter coefficient. Further, a 2DOF parametric nonlinear model of the specimen is established accounting for non-ideal inerter device behavior and its potential to characterize experimental response time-histories, FRFs, and force-displacement relationships of the HDRIs and of the inerter is verified
Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules
Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naĂŻve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement
Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas
Diffuse intrinsic pontine glioma (DIPG) is one of the most frequent malignant pediatric brain tumor and its prognosis is universaly fatal. No significant improvement has been made in last thirty years over the standard treatment with radiotherapy. To address the paucity of understanding of DIPGs, we have carried out integrated molecular profiling of a large series of samples obtained with stereotactic biopsy at diagnosis. While chromosomal imbalances did not distinguish DIPG and supratentorial tumors on CGHarrays, gene expression profiling revealed clear differences between them, with brainstem gliomas resembling midline/thalamic tumours, indicating a closely-related origin. Two distinct subgroups of DIPG were identified. The first subgroup displayed mesenchymal and pro-angiogenic characteristics, with stem cell markers enrichment consistent with the possibility to grow tumor stem cells from these biopsies. The other subgroup displayed oligodendroglial features, and appeared largely driven by PDGFRA, in particular through amplification and/or novel missense mutations in the extracellular domain. Patients in this later group had a significantly worse outcome with an hazard ratio for early deaths, ie before 10 months, 8 fold greater that the ones in the other subgroup (pâ=â0.041, Cox regression model). The worse outcome of patients with the oligodendroglial type of tumors was confirmed on a series of 55 paraffin-embedded biopsy samples at diagnosis (median OS of 7.73 versus 12.37 months, pâ=â0.045, log-rank test). Two distinct transcriptional subclasses of DIPG with specific genomic alterations can be defined at diagnosis by oligodendroglial differentiation or mesenchymal transition, respectively. Classifying these tumors by signal transduction pathway activation and by mutation in pathway member genes may be particularily valuable for the development of targeted therapies
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
A new era for understanding amyloid structures and disease
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-ÎČ structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
Simultaneous Vibration Suppression and Energy Harvesting in Wind Excited Tall Buildings Equipped with the Tuned Mass Damper Inerter (TMDI)
This paper investigates the potential of tuned mass dampers (TMDs) coupled with inerter devices in different tuned mass dampers inerter (TMDI) topologies to dissipate oscillations in tall buildings due to vortex shedding in the across wind direction while generating electric energy. The TMDI is first optimized for minimizing peak accelerations for serviceability purposes in a 74 storey benchmark steel building under different wind intensity levels. It is seen that TMDI stiffness and damping optimal parameters are robust to design/reference wind velocity and, therefore, to potential climate change effects, while achieving same level of performance using significantly smaller attached mass compared to the classical TMD. Then, a regenerative electromagnetic motor (EM) is added to the TMDI allowing for varying the TMDI damping property as well as transforming part of the dissipated kinetic energy to electricity. It is shown that by increasing TMDI damping above the optimal value for vibration suppression and/or by reducing the inerter property increases the available energy for harvesting at the expense of larger floor accelerations. Therefore, it is concluded that by relaxing serviceability limit state requirements associated with occupancy considerations renders possible an increase in energy generation in wind-excited tall building