58 research outputs found

    Observation of liquid–liquid phase transitions in ethane at 300 K

    Get PDF
    We have conducted Raman spectroscopy experiments on liquid ethane (C2H6) at 300 K, obtaining a large amount of data at very high resolution. This has enabled the observation of Raman peaks expected but not previously observed in liquid ethane and a detailed experimental study of the liquid that was not previously possible. We have observed a transition between rigid and nonrigid liquid states in liquid ethane at ca. 250 MPa corresponding to the recently proposed Frenkel line, a dynamic transition between rigid liquid (liquidlike) and nonrigid liquid (gaslike) states beginning in the subcritical region and extending to arbitrarily high pressure and temperature. The observation of this transition in liquid (subcritical) ethane allows a clear differentiation to be made between the Frenkel line (beginning in the subcritical region at higher density than the boiling line) and the Widom lines (emanating from the critical point and not existing in the subcritical region). Furthermore, we observe a narrow transition at ca. 1000 MPa to a second rigid liquid state. We propose that this corresponds to a state in which orientational order must exist to achieve the expected density and can view the transition in analogy to the transition in the solid state away from the orientationally disordered phase I to the orientationally ordered phases II and III

    Transition from gas-like to liquid-like behavior in supercritical N2

    Get PDF
    We have studied in detail the transition from gas-like to rigid liquidlike behavior in supercritical N2 at 300 K (2.4 TC). Our study combines neutron diffraction and Raman spectroscopy with ab initio molecular dynamics simulations. We observe a narrow transition from gas-like to rigid liquid-like behavior at ca. 150 MPa, which we associate with the Frenkel line. Our findings allow us to reliably characterize the Frenkel line using both diffraction and spectroscopy methods, backed up by simulation, for the same substance. We clearly lay out what parameters change, and what parameters do not change, when the Frenkel line is crossed

    Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    Get PDF
    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb -centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth

    Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide

    Get PDF
    Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er3+ ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component. In this paper, we report on SiO2 thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 μm Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast μs decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature

    NK Cell–Like Behavior of Vα14i NK T Cells during MCMV Infection

    Get PDF
    Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Vα14 invariant natural killer T cell response to MCMV has not been examined. We found that Vα14i NK T cells become activated and produce significant levels of IFN-γ, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Vα14i NK T cells into MCMV-infected CD1d−/− mice demonstrate that CD1d is dispensable for Vα14i NK T cell activation. In contrast, both IFN-α/β and IL-12 are required for optimal activation. Vα14i NK T cell–derived IFN-γ is partially dependent on IFN-α/β but highly dependent on IL-12. Vα14i NK T cells contribute to the immune response to MCMV and amplify NK cell–derived IFN-γ. Importantly, mortality is increased in CD1d−/− mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Vα14i NK T cells that act as effector T cells during bacterial infection, but have NK cell–like behavior during the innate immune response to MCMV infection

    Broadband near-infrared emission from bismuth doped silicon oxide films prepared by ion-implantation

    No full text
    A series of Bismuth (Bi) doped silicon oxide layers were prepared by ion-implantation. All the samples exhibit strong room temperature near-infrared photoluminescence in the range 1.0μm-1.3μm which we assign to Bi related centres in the oxide matrix, similar to that reported previously for Bi doped oxides fabricated by alternative methods. The activation and sensitization of these luminescent centres was studied as a function of anneal temperature and co-doping with silicon (Si) and aluminium (Al). Comparision with Erbium doped films prepared in a similar way reveals comparable emission intensity from the Bi doped films. The even wider Bi-related luminescence makes this system very promising for use in on-chip, broadband lasers and amplifiers, particularly for use in telecommunications. © 2012 IEEE

    Broadband near-infrared emission from bismuth doped silicon oxide films prepared by ion-implantation

    No full text
    A series of Bismuth (Bi) doped silicon oxide layers were prepared by ion-implantation. All the samples exhibit strong room temperature near-infrared photoluminescence in the range 1.0μm-1.3μm which we assign to Bi related centres in the oxide matrix, similar to that reported previously for Bi doped oxides fabricated by alternative methods. The activation and sensitization of these luminescent centres was studied as a function of anneal temperature and co-doping with silicon (Si) and aluminium (Al). Comparision with Erbium doped films prepared in a similar way reveals comparable emission intensity from the Bi doped films. The even wider Bi-related luminescence makes this system very promising for use in on-chip, broadband lasers and amplifiers, particularly for use in telecommunications. © 2012 IEEE
    • …
    corecore