85 research outputs found

    Adverse outcomes after colposcopy

    Get PDF
    Abstract Background Colposcopy is an essential part of the National Health Service Cervical Screening Programme (NHSCSP). It is used for both diagnosis and treatment of pre-cancerous cells of the cervix. Despite colposcopy being a commonly performed and relatively invasive procedure, very little research has explored the potential long-term impacts of colposcopic examination upon patient quality of life. The aim of this study is to investigate and quantify any potential reduction in women's quality of life following a colposcopy procedure. More specifically, the degree of female sexual dysfunction and the excess risk of adverse events in those undergoing colposcopy will be explored. If such risks are identified, these can be communicated to women before undergoing colposcopy. It will also assist in identifying whether there are particular sub-groups at greater risk and if so, this may lead to a re-evaluation of current recommendations concerning colposcopically directed treatments. Methods/design Cohort study using postal surveys to assess sexual function and quality of life in women who have attended for colposcopy (cases), compared with those who have not attended colposcopy (controls). The prevalence and excess risk of female sexual dysfunction will be determined. Logistic regression will identify the predictors of adverse outcomes. Discussion There are more than 400,000 colposcopy appointments each year in England, of which 134,000 are new referrals. There is some evidence that there may be long-term implications for women treated under colposcopy with respect to adverse obstetric outcomes, persisting anxiety, increased rates of sexual dysfunction and reduced quality of life. Reliably establishing whether such adverse outcomes exist and the excess risk of adverse events will facilitate informed decision-making and patient choice.</p

    Linear Fidelity in Quantification of Anti-Viral CD8+ T Cells

    Get PDF
    Enumeration of anti-viral CD8+ T cells to make comparisons between mice, viruses and vaccines is a frequently used approach, but controversy persists as to the most appropriate methods. Use of peptide-MHC tetramers (or variants) and intracellular staining for cytokines, in particular IFNγ, after a short ex vivo stimulation are now common, as are a variety of cytotoxicity assays, but few direct comparisons have been made. It has been argued that use of tetramers leads to the counting of non-functional T cells and that measurement of single cytokines will fail to identify cells with alternative functions. Further, the linear range of these methods has not been tested and this is required to give confidence that relative quantifications can be compared across samples. Here we show for two acute virus infections and CD8+ T cells activated in vitro that DimerX (a tetramer variant) and intracellular staining for IFNγ, alone or in combination with CD107 to detect degranulation, gave comparable results at the peak of the response. Importantly, these methods were highly linear over nearly two orders of magnitude. In contrast, in vitro and in vivo assays for cytotoxicity were not linear, suffering from high background killing, plateaus in maximal killing and substantial underestimation of differences in magnitude of responses

    Renal Thrombotic Microangiopathy in Mice with Combined Deletion of Endocytic Recycling Regulators EHD3 and EHD4

    Get PDF
    Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3–/– mice and assessed renal development and pathology. Ehd3–/– animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3–/– mice and suggested functional compensation, we generated and analyzed Ehd3–/–; Ehd4–/– mice. These mice were smaller, possessed smaller and paler kidneys, were proteinuric and died between 3–24 weeks of age. Detailed analyses of Ehd3–/–; Ehd4–/– kidneys demonstrated thrombotic microangiopathy (TMA)-like glomerular lesions including thickening and duplication of glomerular basement membrane, endothelial swelling and loss of fenestrations. Other changes included segmental podocyte foot process effacement, mesangial interposition, and abnormal podocytic and mesangial marker expression. The glomerular lesions observed were strikingly similar to those seen in human pre-eclampsia and mouse models of reduced VEGF expression. As altered glomerular endothelial VEGFR2 expression and localization and increased apoptosis was observed in the absence of EHD3 and EHD4, we propose that EHD-mediated endocytic traffic of key surface receptors such as VEGFR2 is essential for physiological control of glomerular function. Furthermore, Ehd3–/–; Ehd4–/– mice provide a unique model to elucidate mechanisms of glomerular endothelial injury which is observed in a wide variety of human renal and extra-renal diseases

    Differential Susceptibility of Interneurons Expressing Neuropeptide Y or Parvalbumin in the Aged Hippocampus to Acute Seizure Activity

    Get PDF
    Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY) or the calcium binding protein parvalbumin (PV) between young adult (5-months old) and aged (22-months old) F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA) induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity

    Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

    Get PDF
    Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures

    Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

    Get PDF
    As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification

    Ultra-Rare Genetic Variation in the Epilepsies : A Whole-Exome Sequencing Study of 17,606 Individuals

    Get PDF
    Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABA(A) receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNAIG, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.Peer reviewe

    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals

    Get PDF
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy
    corecore