384 research outputs found
ER stress activates the NLRP3 inflammasome via an UPR-independent pathway
Uncontrolled endoplasmic reticulum (ER) stress responses are proposed to contribute to the pathology of chronic inflammatory diseases such as type 2 diabetes or atherosclerosis. However, the connection between ER stress and inflammation remains largely unexplored. Here, we show that ER stress causes activation of the NLRP3 inflammasome, with subsequent release of the pro-inflammatory cytokine interleukin-1β. This ER-triggered proinflammatory signal shares the same requirement for reactive oxygen species production and potassium efflux compared with other known NLRP3 inflammasome activators, but is independent of the classical unfolded protein response (UPR). We thus propose that the NLRP3 inflammasome senses and responds to ER stress downstream of a previously uncharacterized ER stress response signaling pathway distinct from the UPR, thus providing mechanistic insight to the link between ER stress and chronic inflammatory diseases
Anti-Helicobacter pylori seropositivity: influence on severity and treatment response in patients with chronic hepatitis C
The definitive version is available at www.blackwell-synergy.comArticleJOURNAL OF VIRAL HEPATITIS. 14(1): 48-54 (2007)journal articl
Coarse-Graining and Self-Dissimilarity of Complex Networks
Can complex engineered and biological networks be coarse-grained into smaller
and more understandable versions in which each node represents an entire
pattern in the original network? To address this, we define coarse-graining
units (CGU) as connectivity patterns which can serve as the nodes of a
coarse-grained network, and present algorithms to detect them. We use this
approach to systematically reverse-engineer electronic circuits, forming
understandable high-level maps from incomprehensible transistor wiring: first,
a coarse-grained version in which each node is a gate made of several
transistors is established. Then, the coarse-grained network is itself
coarse-grained, resulting in a high-level blueprint in which each node is a
circuit-module made of multiple gates. We apply our approach also to a
mammalian protein-signaling network, to find a simplified coarse-grained
network with three main signaling channels that correspond to cross-interacting
MAP-kinase cascades. We find that both biological and electronic networks are
'self-dissimilar', with different network motifs found at each level. The
present approach can be used to simplify a wide variety of directed and
nondirected, natural and designed networks.Comment: 11 pages, 11 figure
Laparoscopic findings in patients with nonalcoholic steatohepatitis
ArticleLIVER INTERNATIONAL. 26(1): 32-38 (2006)journal articl
Useful parameters for distinguishing nonalcoholic steatohepatitis with mild steatosis from cryptogenic chronic hepatitis in the Japanese population
The definitive version is available at www.blackwell-synergy.com.ArticleLIVER INTERNATIONAL. 26(8): 956-963 (2006)journal articl
Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia
In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-κB (NF-κB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-κB independent manner.
Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation
Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive. Here, we present the structure of the human LRRC8D isoform, which enables the permeation of organic substrates through VRAC. The LRRC8D homo-hexamer structure displays a two-fold symmetric arrangement, and together with a structure-based electrophysiological analysis, revealed two key features. The pore constriction on the extracellular side is wider than that in the LRRC8A structures, which may explain the increased permeability of organic substrates. Furthermore, an N-terminal helix protrudes into the pore from the intracellular side and may be critical for gating
- …