35 research outputs found

    S-100 protein positive cells in nasopharyngeal carcinoma (NPC): absence of prognostic significance. A clinicopathological and immunohistochemical study of 40 cases

    Get PDF
    An immunohistochemical study of S-100 protein in 43 nasopharyngeal carcinomas (NPC) of known clinical evolution (33 primary and 10 metastatic) is presented. Sixty per cent of primary site cases as well as all metastatic forms showed S-100 protein positive cells intermingled with tumour cells. These S-100 positive elements were identified as Langerhans cells. No significant differences were found when correlating S-100 protein positivity and histological NPC variants, neither in age nor in sex of patients. Statistical analysis failed to demonstrate any positive correlation between S-100 protein reactivity and clinical survival

    Genome-Wide Association Study of Treatment Refractory Schizophrenia in Han Chinese

    Get PDF
    We report the first genome-wide association study of a joint analysis using 795 Han Chinese individuals with treatment-refractory schizophrenia (TRS) and 806 controls. Three loci showed suggestive significant association with TRS were identified. These loci include: rs10218843 (Pβ€Š=β€Š3.04Γ—10βˆ’7) and rs11265461 (Pβ€Š=β€Š1.94Γ—10βˆ’7) are adjacent to signaling lymphocytic activation molecule family member 1 (SLAMF1); rs4699030 (Pβ€Š=β€Š1.94Γ—10βˆ’6) and rs230529 (Pβ€Š=β€Š1.74Γ—10βˆ’7) are located in the gene nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1); and rs13049286 (Pβ€Š=β€Š3.05Γ—10βˆ’5) and rs3827219 (Pβ€Š=β€Š1.66Γ—10βˆ’5) fall in receptor-interacting serine/threonine-protein kinase 4 (RIPK4). One isolated single nucleotide polymorphism (SNP), rs739617 (Pβ€Š=β€Š3.87Γ—10βˆ’5) was also identified to be associated with TRS. The -94delATTG allele (rs28362691) located in the promoter region of NFKB1 was identified by resequencing and was found to associate with TRS (Pβ€Š=β€Š4.85Γ—10βˆ’6). The promoter assay demonstrated that the -94delATTG allele had a significant lower promoter activity than the -94insATTG allele in the SH-SY5Y cells. This study suggests that rs28362691 in NFKB1 might be involved in the development of TRS

    Pathogenesis of Henoch-SchΓΆnlein purpura nephritis

    Get PDF
    The severity of renal involvement is the major factor determining the long-term outcome of children with Henoch-SchΓΆnlein purpura (HSP) nephritis (HSPN). Approximately 40% children with HSP develop nephritis, usually within 4 to 6Β weeks after the initial onset of the typical purpuric rashes. Although the pathogenetic mechanisms are still not fully delineated, several studies suggest that galactose-deficient IgA1 (Gd-IgA1) is recognized by anti-glycan antibodies, leading to the formation of the circulating immune complexes and their mesangial deposition that induce renal injury in HSPN

    Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA) ACE Network Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA) The Autism Genome Project (AGP) from Autism Speaks (USA) Canadian Institutes of Health Research (CIHR), Genome Canada Health Research Board (Ireland) Hilibrand Foundation (USA) Medical Research Council (UK) National Institutes of Health (USA) Ontario Genomics Institute University of Toronto McLaughlin Centre Simons Foundation Johns Hopkins Autism Consortium of Boston NLM Family foundation National Institute of Health grants National Health Medical Research Council Scottish Rite Spunk Fund, Inc. Rebecca and Solomon Baker Fund APEX Foundation National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD) endowment fund of the Nancy Pritzker Laboratory (Stanford) Autism Society of America Janet M. Grace Pervasive Developmental Disorders Fund The Lundbeck Foundation universities and university hospitals of Aarhus and Copenhagen Stanley Foundation Centers for Disease Control and Prevention (CDC) Netherlands Scientific Organization Dutch Brain Foundation VU University Amsterdam Trinity Centre for High Performance Computing through Science Foundation Ireland Autism Genome Project (AGP) from Autism Speak

    Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways

    Medical conditions in autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) is a behaviourally defined syndrome where the etiology and pathophysiology is only partially understood. In a small proportion of children with the condition, a specific medical disorder is identified, but the causal significance in many instances is unclear. Currently, the medical conditions that are best established as probable causes of ASD include Fragile X syndrome, Tuberous Sclerosis and abnormalities of chromosome 15 involving the 15q11-13 region. Various other single gene mutations, genetic syndromes, chromosomal abnormalities and rare de novo copy number variants have been reported as being possibly implicated in etiology, as have several ante and post natal exposures and complications. However, in most instances the evidence base for an association with ASD is very limited and largely derives from case reports or findings from small, highly selected and uncontrolled case series. Not only therefore, is there uncertainty over whether the condition is associated, but the potential basis for the association is very poorly understood. In some cases the medical condition may be a consequence of autism or simply represent an associated feature deriving from an underlying shared etiology. Nevertheless, it is clear that in a growing proportion of individuals potentially causal medical conditions are being identified and clarification of their role in etio-pathogenesis is necessary. Indeed, investigations into the causal mechanisms underlying the association between conditions such as tuberous sclerosis, Fragile X and chromosome 15 abnormalities are beginning to cast light on the molecular and neurobiological pathways involved in the pathophysiology of ASD. It is evident therefore, that much can be learnt from the study of probably causal medical disorders as they represent simpler and more tractable model systems in which to investigate causal mechanisms. Recent advances in genetics, molecular and systems biology and neuroscience now mean that there are unparalleled opportunities to test causal hypotheses and gain fundamental insights into the nature of autism and its development

    Use of clinical chromosomal microarray in Chinese patients with autism spectrum disorderβ€”implications of a copy number variation involving DPP10

    No full text
    Abstract Background Array comparative genomic hybridization (aCGH) is recommended as a first-tier genetic test for children with autism spectrum disorder (ASD). However, interpretation of results can often be challenging partly due to the fact that copy number variants (CNVs) in non-European ASD patients are not well studied. To address this literature gap, we report the CNV findings in a cohort of Chinese children with ASD. Methods DNA samples were obtained from 258 Chinese ASD patients recruited from a child assessment center between January 2011 and August 2014. aCGH was performed using NimbleGen-CGX-135k or Agilent-CGX 60k oligonucleotide array. Results were classified based on existing guidelines and literature. Results Ten pathogenic CNVs and one likely pathogenic CNV were found in nine patients, with an overall diagnostic yield of 3.5%. A 138Β kb duplication involving 3β€² exons of DPP10 (arr[GRCh37] 2q14.1(116534689_116672358)x3), reported to be associated with ASD, was identified in one patient (0.39%). The same CNV was reported as variant of uncertain significance (VUS) in DECIPHER database. Multiple individuals of typical development carrying a similar duplication were identified among our ancestry-matched control with a frequency of 6/653 (0.92%) as well as from literature and genomic databases. Conclusions The DPP10 duplication is likely a benign CNV polymorphism enriched in Southern Chinese with aΒ population frequency of ~1%. This highlights the importance of using ancestry-matched controls in interpretation of aCGH findings

    Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality

    No full text
    Resting heart rate is a heritable trait correlated with life span. Little is known about the genetic contribution to resting heart rate and its relationship with mortality. We performed a genome-wide association discovery and replication analysis starting with 19.9 million genetic variants and studying up to 265,046 individuals to identify 64 loci associated with resting heart rate (P <5 x 10(-8)); 46 of these were novel. We then used the genetic variants identified to study the association between resting heart rate and all-cause mortality. We observed that a genetically predicted resting heart rate increase of 5 beats per minute was associated with a 20% increase in mortality risk (hazard ratio 1.20, 95% confidence interval 1.11-1.28, P = 8.20 x 10(-7)) translating to a reduction in life expectancy of 2.9 years for males and 2.6 years for females. Our findings provide evidence for shared genetic predictors of resting heart rate and all-cause mortality
    corecore