12 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Pinus nigra anthropogenic treelines in the central Apennines show common pattern of tree recruitment

    Get PDF
    Treeline position, structure, and composition are shaped by natural and anthropogenic factors. At human-disturbed treelines, it is particularly difficult to disentangle the specific role of natural and anthropogenic drivers controlling tree recruitment dynamics following land abandonment. We tested for a possible common regeneration pattern of Pinus nigra Arn. at four upper treeline ecotones in the central Apennines (Italy). The sites were selected based on (1) the occurrence of natural encroachment of P. nigra above 1600 m a.s.l., and (2) the mountain top elevation higher than 2000 m a.s.l. We assessed structure and spatiotemporal patterns of P. nigra advancing regeneration using point and surface pattern analyses. We mapped, measured, and dated 845 trees sampled on a total surface area of 336 ha. P. nigra is the only tree species expanding at high altitude and features a scattered process that started 35–40 years ago, with a maximum recruitment frequency between 1995 and 2003. Pinus regeneration appeared over-dispersed along the slope at a scale range of 12–18 m. We found spatial segregation between saplings and young trees at intermediate distances (8–17 m) and small patches of young trees distributed along the treeline ecotone. The spatial pattern of P. nigra encroachment in the central Apennines revealed a replicable model independent of treeline topography and local disturbance histories
    corecore