33 research outputs found
Analysis of lower limb internal kinetics and electromyography in elite race walking.
The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles
Ground reaction forces of Olympic and World Championship race walkers.
Abstract Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p < .001), resulting in a flattened profile. Athletes with narrower stride widths experienced reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency
Champions are racers, not pacers: an analysis of qualification patterns of Olympic and IAAF World Championship middle distance runners
The aim of this study was to analyse qualification patterns in middle distance running and identify whether athletes adopt theoretically optimal tactics, or whether the will to win overrides these. The performances of 295 men and 258 women finalists in the Olympic and IAAF World Championship 800 m and 1500 m events from 1999 to 2017 were analysed across all three rounds of competition. Finishing position, time and ranking amongst all competitors were found for each athlete. Position in the final was correlated with finishing position in the heats and semi-finals (all P < 0.001), but not with finishing times in those rounds. Of the 57 champions, 40 won both their heat and semi-final, even though a lower automatic qualification position would have been sufficient, and only 18 achieved a season’s best time in the final. The will to win amongst the eventual champions (and other medallists) suggests predominantly ego oriented behaviour that is encouraged by a performance climate, and which did not appear to differ between men and women. Coaches and athletes are recommended to note that championship-specific physiological and psychological factors are important to develop in training and prior competition to improve both short- and long-term championship strategies
Analysis of lower limb work-energy patterns in world-class race walkers
The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (± 6.9) and 40.3 J (± 8.3) respectively), with the ankle plantarflexors (16.3 J (± 4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (–49.1 J (± 8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = –.689, P = .002). The knee flexors did most negative work (–38.6 J (± 5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury
