6 research outputs found
Extensive degeneracy, Coulomb phase and magnetic monopoles in an artificial realization of the square ice model
Artificial spin ice systems have been introduced as a possible mean to
investigate frustration effects in a well-controlled manner by fabricating
lithographically-patterned two-dimensional arrangements of interacting magnetic
nanostructures. This approach offers the opportunity to visualize
unconventional states of matter, directly in real space, and triggered a wealth
of studies at the frontier between nanomagnetism, statistical thermodynamics
and condensed matter physics. Despite the strong efforts made these last ten
years to provide an artificial realization of the celebrated square ice model,
no simple geometry based on arrays of nanomagnets succeeded to capture the
macroscopically degenerate ground state manifold of the corresponding model.
Instead, in all works reported so far, square lattices of nanomagnets are
characterized by a magnetically ordered ground state consisting of local
flux-closure configurations with alternating chirality. Here, we show
experimentally and theoretically, that all the characteristics of the square
ice model can be observed if the artificial square lattice is properly
designed. The spin configurations we image after demagnetizing our arrays
reveal unambiguous signatures of an algebraic spin liquid state characterized
by the presence of pinch points in the associated magnetic structure factor.
Local excitations, i.e. classical analogues of magnetic monopoles, are found to
be free to evolve in a massively degenerated, divergence-free vacuum. We thus
provide the first lab-on-chip platform allowing the investigation of collective
phenomena, including Coulomb phases and ice-like physics.Comment: 26 pages, 10 figure