178 research outputs found

    A Polymorphism in the HLA-DPB1 Gene Is Associated with Susceptibility to Multiple Sclerosis

    Get PDF
    We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each ). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls () and were highly significant in the combined dataset (). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set , replication set , combined ). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association

    Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain

    Get PDF
    Brewer’s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositionswere produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 NNaOHsolution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes.However, soda pulping of acid pretreated BSG gave a celluloserich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and <3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), Brazil.CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)

    The role of lifestyle changes in the management of chronic liver disease

    Get PDF
    The prevalence of obesity worldwide has dramatically increased during the last three decades. With obesity comes a variety of adverse health outcomes which are grouped under the umbrella of metabolic syndrome. The liver in particular seems to be significantly impacted by fat deposition in the presence of obesity. In this article we discuss several liver conditions which are directly affected by overweight and obese status, including non-alcoholic fatty liver disease, chronic infection with hepatitis C virus and post-liver transplant status. The deleterious effects of obesity on liver disease and overall health can be significantly impacted by a culture that fosters sustained nutritional improvement and regular physical activity. Here we summarize the current evidence supporting non-pharmacological, lifestyle interventions that lead to weight reduction, improved physical activity and better nutrition as part of the management and treatment of these liver conditions

    Variation in helper effort among cooperatively breeding bird species is consistent with Hamilton's Rule.

    Get PDF
    Investment by helpers in cooperative breeding systems is extremely variable among species, but this variation is currently unexplained. Inclusive fitness theory predicts that, all else being equal, cooperative investment should correlate positively with the relatedness of helpers to the recipients of their care. We test this prediction in a comparative analysis of helper investment in 36 cooperatively breeding bird species. We show that species-specific helper contributions to cooperative brood care increase as the mean relatedness between helpers and recipients increases. Helper contributions are also related to the sex ratio of helpers, but neither group size nor the proportion of nests with helpers influence helper effort. Our findings support the hypothesis that variation in helping behaviour among cooperatively breeding birds is consistent with Hamilton's rule, indicating a key role for kin selection in the evolution of cooperative investment in social birds

    Polymorphisms in the Tlr4 and Tlr5 Gene Are Significantly Associated with Inflammatory Bowel Disease in German Shepherd Dogs

    Get PDF
    Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease

    Confirmation of a non-synonymous SNP in PNPLA8 as a candidate causal mutation for Weaver syndrome in Brown Swiss cattle

    Get PDF
    Background: Bovine progressive degenerative myeloencephalopathy (Weaver syndrome) is a neurodegenerative disorder in Brown Swiss cattle that is characterized by progressive hind leg weakness and ataxia, while sensorium and spinal reflexes remain unaffected. Although the causal mutation has not been identified yet, an indirect genetic test based on six microsatellite markers and consequent exclusion of Weaver carriers from breeding have led to the complete absence of new cases for over two decades. Evaluation of disease status by imputation of 41 diagnostic single nucleotide polymorphisms (SNPs) and a common haplotype published in 2013 identified several suspected carriers in the current breeding population, which suggests a higher frequency of the Weaver allele than anticipated. In order to prevent the reemergence of the disease, this study aimed at mapping the gene that underlies Weaver syndrome and thus at providing the basis for direct genetic testing and monitoring of today's Braunvieh/Brown Swiss herds. Results: Combined linkage/linkage disequilibrium mapping on Bos taurus chromosome (BTA) 4 based on Illumina Bovine SNP50 genotypes of 43 Weaver-affected, 31 Weaver carrier and 86 Weaver-free animals resulted in a maximum likelihood ratio test statistic value at position 49,812,384 bp. The confidence interval (0.853 Mb) determined by the 2-LOD drop-off method was contained within a 1.72-Mb segment of extended homozygosity. Exploitation of whole-genome sequence data from two official Weaver carriers and 1145 other bulls that were sequenced in Run4 of the 1000 bull genomes project showed that only a non-synonymous SNP (rs800397662) within the PNPLA8 gene at position 49,878,773 bp was concordant with the Weaver carrier status. Targeted SNP genotyping confirmed this SNP as a candidate causal mutation for Weaver syndrome. Genotyping for the candidate causal mutation in a random sample of 2334 current Braunvieh animals suggested a frequency of the Weaver allele of 0.26 %. Conclusions: Through combined use of exhaustive sequencing data and SNP genotyping results, we were able to provide evidence that supports the non-synonymous mutation at position 49,878,773 bp as the most likely causal mutation for Weaver syndrome. Further studies are needed to uncover the exact mechanisms that underlie this syndrome

    A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters.</p> <p>Results</p> <p>We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses.</p> <p>Conclusions</p> <p>The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.</p
    • 

    corecore