7 research outputs found

    Bulbispermine: A Crinine-Type Amaryllidaceae Alkaloid Exhibiting Cytostatic Activity toward Apoptosis-Resistant Glioma Cells

    No full text
    The Amaryllidaceae alkaloid bulbispermine was derivatized to produce a small group of synthetic analogues. These, together with bulbispermine's natural crinine-type congeners, were evaluated invitro against a panel of cancer cell lines with various levels of resistance to pro-apoptotic stimuli. Bulbispermine, haemanthamine, and haemanthidine showed the most potent antiproliferative activities as determined by the MTT colorimetric assay. Among the synthetic bulbispermine analogues, only the C1,C2-dicarbamate derivative exhibited notable growth inhibitory properties. All active compounds were found not to discriminate between the cancer cell lines based on the apoptosis sensitivity criterion; they displayed similar potencies in both cell types, indicating that the induction of apoptosis is not the primary mechanism responsible for antiproliferative activity in this series of compounds. It was also found that bulbispermine inhibits the proliferation of glioblastoma cells through cytostatic effects, possibly arising from rigidification of the actin cytoskeleton. These findings lead us to argue that crinine-type alkaloids are potentially useful drug leads for the treatment of apoptosis-resistant cancers and glioblastoma in particular. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Activity of 2-aryl-2-(3-indolyl)acetohydroxamates against drug-resistant cancer cells

    Get PDF
    Many types of tumor, including glioma, melanoma, non-small cell lung, esophageal, and head and neck cancer, among others, are intrinsically resistant to apoptosis induction and poorly responsive to current therapies with proapoptotic agents. In addition, tumors often develop multidrug resistance based on the cellular efflux of chemotherapeutic agents. Thus, novel anticancer agents capable of overcoming these intrinsic or developed tumor resistance mechanisms are urgently needed. We describe a series of 2-aryl-2-(3-indolyl)acetohydroxamic acids that are active against apoptosis-and multidrug-resistant cancer cells as well as glioblastoma neurosphere stemlike cell cultures derived from patients. Thus, the described compounds serve as a novel chemical scaffold for the development of potentially highly effective clinical cancer drugs.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Anticancer properties of an important drug lead podophyllotoxin can be efficiently mimicked by diverse heterocyclic scaffolds accessible via one-step synthesis

    No full text
    Structural simplification of an antimitotic natural product podophyllotoxin with mimetic heterocyclic scaffolds constructed using multicomponent reactions led to the identification of compounds exhibiting low nanomolar antiproliferative and apoptosis-inducing properties. The most potent compounds were found in the dihydropyridopyrazole, dihydropyridonaphthalene, dihydropyridoindole, and dihydropyridopyrimidine scaffold series. Biochemical mechanistic studies performed with dihydropyridopyrazole compounds showed that these heterocycles inhibit in vitro tubulin polymerization and disrupt the formation of mitotic spindles in dividing cells at low nanomolar concentrations, in a manner similar to podophyllotoxin itself. Separation of a racemic dihydropyridonaphthalene into individual enantiomers demonstrated that only the optical antipode matching the absolute configuration of podophyllotoxin possessed potent anticancer activity. Computer modeling, performed using the podophyllotoxin binding site on β-tubulin, provided a theoretical understanding of these successful experimental findings. © 2011 American Chemical Society.Articl

    Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids

    No full text
    We developed synthetic chemistry to access the marine alkaloid rigidins and over 40 synthetic analogues based on the 7-deazaxanthine, 7-deazaadenine, 7-deazapurine, and 7-deazahypoxanthine skeletons. Analogues based on the 7-deazahypoxanthine skeleton exhibited nanomolar potencies against cell lines representing cancers with dismal prognoses, tumor metastases, and multidrug resistant cells. Studies aimed at elucidating the mode(s) of action of the 7-deazahypoxanthines in cancer cells revealed that they inhibited in vitro tubulin polymerization and disorganized microtubules in live HeLa cells. Experiments evaluating the effects of the 7-deazahypoxanthines on the binding of [3H]colchicine to tubulin identified the colchicine site on tubulin as the most likely target for these compounds in cancer cells. Because many microtubule-targeting compounds are successfully used to fight cancer in the clinic, we believe the new chemical class of antitubulin agents represented by the 7-deazahypoxanthine rigidin analogues have significant potential as new anticancer agents. © 2013 American Chemical Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells

    No full text
    Plants of the Amaryllidaceae family produce a large variety of alkaloids and non-basic secondary metabolites, many of which are investigated for their promising anticancer activities. Of these, crinine-type alkaloids based on the 5,10b-ethanophenanthridine ring system were recently shown to be effective at inhibiting proliferation of cancer cells resistant to various pro-apoptotic stimuli and representing tumors with dismal prognoses refractory to current chemotherapy, such as glioma, melanoma, non-small-cell lung, esophageal, head and neck cancers, among others. Using this discovery as a starting point and taking advantage of a concise biomimetic route to the crinine skeleton, a collection of crinine analogues were synthetically prepared and evaluated against cancer cells. The compounds exhibited single-digit micromolar activities and retained this activity in a variety of drug-resistant cancer cell cultures. This investigation resulted in the discovery of new bicyclic ring systems with significant potential in the development of effective clinical cancer drugs capable of overcoming cancer chemotherapy resistance.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Natural products as leads to anticancer drugs

    No full text
    corecore