7 research outputs found

    On the structure of the B\"acklund transformations for the relativistic lattices

    Full text link
    The B\"acklund transformations for the relativistic lattices of the Toda type and their discrete analogues can be obtained as the composition of two duality transformations. The condition of invariance under this composition allows to distinguish effectively the integrable cases. Iterations of the B\"acklund transformations can be described in the terms of nonrelativistic lattices of the Toda type. Several multifield generalizations are presented

    On the Inverse Scattering Method for Integrable PDEs on a Star Graph

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. We present a framework to solve the open problem of formulating the inverse scattering method (ISM) for an integrable PDE on a star-graph. The idea is to map the problem on the graph to a matrix initial-boundary value (IBV) problem and then to extend the unified method of Fokas to such a matrix IBV problem. The nonlinear Schrödinger equation is chosen to illustrate the method. The framework unifies all previously known examples which are recovered as particular cases. The case of general Robin conditions at the vertex is discussed: the notion of linearizable initial-boundary conditions is introduced. For such conditions, the method is shown to be as efficient as the ISM on the full-line

    Integrability of Difference Equations Through Algebraic Entropy and Generalized Symmetries

    No full text
    Given an equation arising from some application or theoretical consideration one of the first questions one might ask is: What is its behavior? It is integrable? In these lectures we will introduce two different ways for establishing (and in some sense also defining) integrability for difference equations: Algebraic Entropy and Generalized Symmetries. Algebraic Entropy deals with the degrees of growth of the solution of any kind of discrete equation (ordinary, partial or even differential-difference) and usually provides a quick test to establish if an equation is or not integrable. The approach based on Generalized Symmetries also provides tools for investigating integrable equations and to find particular solutions by symmetry reductions. The main focus of the lectures will be on the computational tools that allow us to calculate Generalized Symmetries and extract the value of the Algebraic Entropy from a finite number of iterations of the map
    corecore