417 research outputs found
The Robinson-Trautman Type III Prolongation Structure Contains K
The minimal prolongation structure for the Robinson-Trautman equations of
Petrov type III is shown to always include the infinite-dimensional,
contragredient algebra, K, which is of infinite growth. Knowledge of
faithful representations of this algebra would allow the determination of
B\"acklund transformations to evolve new solutions.Comment: 20 pages, plain TeX, no figures, submitted to Commun. Math. Phy
Cosmological Black Holes on Branes
We examined analytically a cosmological black hole domain wall system. Using
the C-metric construction we derived the metric for the spacetime describing an
infinitely thin domain wall intersecting a cosmological black hole. We studied
the behaviour of the scalar field describing a self-interacting cosmological
domain wall and find the approximated solution valid for large distances. The
thin wall approximation and the back raection problem were elaborated finding
that the topological kink solution smoothed out singular behaviour of the zero
thickness wall using a core topological and hence thick domain wall. We also
analyze the nucleation of cosmological black holes on and in the presence of a
domain walls and conclude that the domain wall will nucleate small black holes
on it rather than large ones inside.Comment: 13 pages, Revtex, to be published in Phys.Rev. D1
The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics
In two previous papers we have analyzed the C-metric in a background with a
cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de
Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat
C-metric. These exact solutions describe a pair of accelerated black holes in
the flat or cosmological constant background, with the acceleration A being
provided by a strut in-between that pushes away the two black holes. In this
paper we analyze the extremal limits of the C-metric in a background with
generic cosmological constant. We follow a procedure first introduced by
Ginsparg and Perry in which the Nariai solution, a spacetime which is the
direct topological product of the 2-dimensional dS and a 2-sphere, is generated
from the four-dimensional dS-Schwarzschild solution by taking an appropriate
limit, where the black hole event horizon approaches the cosmological horizon.
Similarly, one can generate the Bertotti-Robinson metric from the
Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into
the event horizon of the black hole, as well as the anti-Nariai by taking an
appropriate solution and limit. Using these methods we generate the C-metric
counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among
others. One expects that the solutions found in this paper are unstable and
decay into a slightly non-extreme black hole pair accelerated by a strut or by
strings. Moreover, the Euclidean version of these solutions mediate the quantum
process of black hole pair creation, that accompanies the decay of the dS and
AdS spaces
America's Rural Hospitals: A Selective Review of 1980s Research
We review 1980s research on American rural hospitals within the context of a decade of increasing restrictiveness in the reimbursement and operating environments. Areas addressed include rural hospital definitions, organizational and financial performance, and strategic management activities. The latter category consists of hospital closure, diversification and vertical integration, swing-bed conversion, sole community provider designation, horizontal integration and multihospital system affiliation, marketing, and patient retention. The review suggests several research needs, including: developing more meaningful definitions of rural hospitals, engaging in methodologically sound work on the effects of innovative programs and strategic management activities—including conversion of the facility itself—on rural hospital performance, and completing studies of the effects of rural hospital closure or conversion on the health of the communities served.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74857/1/j.1748-0361.1990.tb00682.x.pd
Black Hole Thermodynamics and Statistical Mechanics
We have known for more than thirty years that black holes behave as
thermodynamic systems, radiating as black bodies with characteristic
temperatures and entropies. This behavior is not only interesting in its own
right; it could also, through a statistical mechanical description, cast light
on some of the deep problems of quantizing gravity. In these lectures, I review
what we currently know about black hole thermodynamics and statistical
mechanics, suggest a rather speculative "universal" characterization of the
underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean
Summer School on Black Hole
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
- …